

Geochemical dating of a Swiss freshwater limestone cave using ²³⁰Th/²³⁴U ingrow and ²²⁶Ra-excess decay chronometry

Jost Eikenberg, Maya Jäggi Division for Radiation Protection and Safety Paul Scherrer Institute, CH-5232 Villigen

Overview / Topics

Presentation of a radiochemical method for simultaneous determination of ²²⁶Ra+²²⁸Ra followed by TDCR-measurement and optimized alpha/beta-separation

Application of the chronometers ²³⁰Th/²³⁴U and ²²⁶Ra for dating sedimentary systems

relevant isotopes for quaternary limestone dating

radionuclide	analytical technique
²³⁴ U, (²³⁵ U), ²³⁸ U,	U/TEVA separation, electro-
²³⁰ Th, ²³² Th	deposition, α -spectrometry
²²⁶ Ra, ²²⁸ Ra	filtration (RadDisc), OptiPhase Hisafe3 cocktail, LSC
²¹⁰ Po	spontaneous deposition on silver disc, α -spectrometry

Method implementation: low level determination of ²²⁶Ra in sediments (limestone)

- Sample dissolution CaCO₃ in 1 mol/liter HCl, evaporation, dilution with distilled water
- Filtration of the sample through 3 Empore RadDisc (Mn-oxide impregnated) membrane
- Elution of Ra with alkaline Na-EDTA solution
- Measuring via LSC with optimized α/β -discrimination

The triple coincidence to double coincidence ratio (TDCR) counting technique

PAUL SCHERRER INSTITUT Pulse Length Index (PLI) discrimination with HIDEX SL 300

α -spectrum of ²²⁶Ra with ingrowing daughters 2 h and 8 h after separation using HIDEX 300 SL LSC

α-spectrum of ²²⁶Ra with ingrowing daughters obtained 6 days after separation

β-spectrum of ²²⁸Ra with ingrowing ²²⁸Ac 1 h and 8 h after separation using HIDEX 300 SL LSC

TDCR vs. Efficiency using high purity radionuclide standard solutions

Comparison of measured ²²⁶Ra and the progeny isotopes ²²²Rn, ²¹⁸Po and ²¹⁴Po with calculated decay/ingrowth curves

PAUL SCHERRER INSTITUT ²³⁸U-Series ²³⁵U-Series ²³²Th-Series 238 234 235 J U β 2.45x10⁵y 4.47x10⁹y 7.04x10⁸y ²³¹Pa ²³⁴Pa α α α Pa 4.395 4.196 4.776 MeV , MeV MeV. 1.17min 3.28x10⁴y ß ²³⁴Th^β 232Th ²³⁰Th 231Th 227Th ²²⁸Th α Th 5.013 7.54x10⁴y 1.06d MeV 1.41x10¹⁰y β 1.91γ 24.1d 18.7d 228AC 227AC α α α α Ac 4.010 4.688 6.038 5.423 MeV MeV 21.8y MeV 6.13h MeV ²²⁸Rá^β ²²⁶Ra ²²³Ra ²²⁴Ra Ra 1600y 11.4d 5.75y 3.66d α α α Fr 4.784 5.716 5.686 MeV MeV . MeV 222Rn ²¹⁹Rn ²²⁰Rn Rn 3.825d 3.96s 55.6s α α α 6.819 At 5.490 6.288 MeV MeV MeV ²¹²Po 218Po ²¹⁴Po ²¹⁰Po ²¹⁵Po 216Po Po 66.3% β 1.6x10⁻⁴s 1.8x10⁻³s 138.4d 3.11min β 3x10⁻⁷s β 0.15s 211Bi 212Bi 214**Bi** 210Bi α α α α α α Bi 6.779 6.003 7.687 7.386 5.304 8.784 MeV 19.9min Me∨ MeV MeV MeV MeV 5.01d _2.14min 1.01h ß 33.7% 211Pb ^{214}Pb ß ²¹⁰Pb^β ²⁰⁶Pb 207Pb ^{212}Pb ²⁰⁸Pb α Pb α 6.623 6.051 MeV 10.6h 26.8min 22.3y stable 36.1min stable stable MeV 208**T** 207**T** β ΤI 4.77min 3.05min

Challange for the isotope geochemist: closing the gap between the established²¹⁰Pb and ²³⁰Th/²³⁴U chronometers

$$^{238}U \rightarrow ^{234}U \rightarrow ^{230}Th \rightarrow ^{226}Ra(^{222}Rn) \rightarrow ^{210}Pb(^{210}Po)$$

Principles of U series dating: 1. ²³⁰Th/²³⁴U/²³⁸U

$${}^{230}Th(t) = {}^{230}Th(0) \cdot e^{-\lambda_{230}t} + {}^{234}U(0) \cdot (e^{-\lambda_{234}t} - e^{-\lambda_{230}t})$$

$$^{230}Th(t) = {}^{234}U(0) \cdot (e^{-\lambda_{234}t} - e^{-\lambda_{230}t})$$

$$^{234}U(t) = {}^{234}U(0) \cdot e^{-\lambda_{238}t}$$

$$^{230}Th(t) = {}^{234}U(0) \cdot \left(1 - e^{-\lambda_{230}t}\right)$$

PAUL SCHERRER INSTITUT _____

Principles of U series dating: 1. 230 Th/ 234 U/ 238 U ${}^{234}U(0) = {}^{238}U(0) = {}^{238}U \qquad {}^{230}Th(t) = {}^{234}U(0) \cdot (1 - e^{-\lambda_{230}t})$

Problem 1: inherited ²³⁰Th, wrong age calculation

$${}^{230}Th(t) = {}^{234}U(0) \cdot \left(1 - e^{-\lambda_{230}t}\right) + {}^{230}Th(0) \cdot e^{-\lambda_{230}t}$$

U-series application with U-Th isochrones in sedimentology

Sedimentary Systems

Geological section of the aquifer / recharge area of hell grottoes springs

Travertine dating via $^{226}Ra_{ex}/^{234}U$ and $^{230}Th/^{234}U$

LSC Int. Conference, Copenhagen, 01-05.05.2017

View into the cave system

Travertine precipitation: thermodynamic background

$$\prec H_2 CO \succ + O_2 \rightarrow CO_2 + H_2 O$$

 $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$

$$CaCO_3 + H^+ + HCO_3^- \leftrightarrow Ca^{2+} + 2HCO_3^-$$

$$HCO_{3}^{-} \leftrightarrow CO_{2} + OH^{-}$$

$$HCO_{3}^{-} \leftrightarrow CO_{3}^{2-} + H^{+}$$

$$Ca^{2+} + CO_{3}^{2-} \leftrightarrow CaCO_{3}$$

$$2HCO_{3}^{-} + Ca^{2+} \leftrightarrow CaCO_{3} \downarrow + CO_{2} \uparrow + H_{2}O$$

Ingrowth of ²³⁰Th without an inherited component, why that ?

${}^{230}\text{Ra}/{}^{230}\text{Th}/{}^{234}\text{U dating principle}$ ${}^{230}\text{Th}(t) = {}^{230}\text{Th}(0) \cdot e^{-\lambda} {}^{230t} + {}^{234}U \cdot (1 - e^{-\lambda} {}^{230t})$

$${}^{226}\text{Ra}/{}^{230}\text{Th}/{}^{234}\text{U dating principle}$$
$${}^{230}Th(t) = {}^{230}Th(0) \cdot e^{-\lambda} {}^{230t} + {}^{234}U \cdot (1 - e^{-\lambda} {}^{230t})$$

Let's find an analytical (not numerical) solution for the propagation of the ²²⁶Ra activity with time

²²⁶Ra/²³⁰Th/²³⁴U dating principle

$${}^{226}Ra(t) = {}^{226}Ra(0) \cdot e^{-\lambda_{226}t} + {}^{234}U \cdot \frac{\lambda_{226} \cdot (1 - e^{-\lambda_{230}t}) - \lambda_{230} \cdot (1 - e^{-\lambda_{226}t})}{\lambda_{226} - \lambda_{230}}$$

$${}^{226}Ra_{ex}(t) = {}^{226}Ra_{aut} - {}^{226}Ra_{sup}(t) \qquad {}^{226}Ra_{aut} = {}^{226}Ra_m - k \cdot {}^{232}Th_m$$

$$\frac{226_{Ra_{ex}(t)}}{226_{Ra(0)}} = \frac{226_{Ra_{aut}} - 226_{Ra_{sup}(t)}}{226_{Ra(0)}} = e^{-\lambda_{226}t} \qquad t_{age} = -\frac{1}{\lambda_{226}} \cdot \ln\left(\frac{226_{Ra_{aut}} - 226_{Ra_{sup}(t)}}{226_{Ra(0)}}\right)$$

$$F(t) = \frac{\frac{226}{Ra_{aut}} - \frac{226}{Ra_{sup}(t)}}{\frac{226}{Ra(0)}} - e^{-\lambda_{226}t}$$

Validating the model with the sample data

FED PAUL SCHERRER INSTITUT — Calculating $^{226}Ra_{ex}$ -ages analytically with the assumption of constant $Ra_{ex}/^{234}U$ ratios

Periodic Table of the Elements

Reasons for a stable aqueous chemistry, i.e. constant initial ²²⁶Ra(0)

Comparing $^{226}Ra_{ex}$ / $^{226}Ra(0)$ with ^{230}Th / ^{234}U ages

Conclusions

- ²³⁰Th/²³⁴U and ²²⁶Ra_{ex}/²³⁴U two chronometer dating yields consistent results (agreeing ages)
- > Inherited ²³⁰Th at sample formation is negligible
- The chemical groundwater composition seems to be highly uniform, obviously there is almost no change of the ²²⁶Ra-initial with time

Understanding the dynamics of active volcanic systems: Can we determine melt uplift velocities, melt chamber residence times or eruption events by use of natural tracers ??

The dynamic earth: sea floor spreading and subduction of oceanic plates

Study objects: island arc volcanic rocks from the Sunda-Banda subduction zone

Which radio-tracers can be applied ?

Isotope	Half-life [years]	Suitable time span
²³⁰ Th	76000	2000 - 200000
²³¹ Pa	33000	1000 - 100000
²²⁶ Ra	1600	100 - 6000
²¹⁰ Pb	22	3 - 100

