LSC2017 - An International Conference on Advances in Liquid Scintillation Spectrometry, Copenhagen Denmark, 1 - 5 May 2017

Automation of the radiochemical procedures for the sequential separation of radionuclides

Kun Ho CHUNG

Environmental Radioactivity Assessment Team, KAERI

OUTLINE

- I. Design and fabrication of an Automated Sequential Radionuclide Separator
 - ✓ ASRS hardware and software
- II. Characterization of the ASRS
 - ✓ Pump calibration
 - ✓ Flow rate characterization
 - ✓ Dead volume and memory effect
- III. Optimization of an automated sequential radiochemical procedures
 - ✓ Tandem column arrangement: TRU resin and Sr-spec resin
 - ✓ Flow rate effects on method efficiency: separation of Fe and Sr
- IV. Application of the ASRS

WHY Rapid analysis & Automation?

- ✓ Many samples in an emergency situation
- ✓ Repeated process in radiochemical separation
- ✓ Use of toxic chemicals in RNs separation
- ✓ Labor-intensive radiochemical process
- ✓ Human error under long-period repeated works
- ✓ Slow and time-consuming under gravity flow
- ✓ Deterioration of reproducibility in a vacuum manifold
- ✓ To increase sample throughput and reproducibility
- ✓ To reduce sample preparation costs
- ✓ To improve worker safety
- \checkmark To provide accurate and timely analytical results

Conventional method & Rapid method? On the radiochemical separations

Classical method

Gravity-feed ion exchange

Rapid method

Pump or Vacuum feed ion exchange

Separation systems for enhancing the flow rate

Eichrom: Vacuum Box System

- ✓ Enhanced flow rate, but manual process
- $\checkmark\,$ Efficient for batch processing
- ✓ Sample through-put is limited by the labor force and individual skill sets
- ✓ Exposed to the open sources of radioactivity

What do you need for translating manual methods into automated methods ?

Eichrom: Vacuum Box System Enhanced flow rate, but manual process

PC based -Control Software

Simultaneous Determination of Hard-to-Measure Radionuclides: Extraction Chromatography, Mass Spectrometry & Radiometry

Design of an automated radionuclide separation system: Sequential separation by single column arrangement: 1 sample

Design of an automated radionuclide separation system: Sequential separation by tandem column arrangement: 1 sample

Design of an automated radionuclide separation system: Sequential separation by tandem column arrangement: 4 samples

Design of an automated radionuclide separation system: Algorithm used to the source code for executing the automated protocol

Signal and fluid connection of the ASRS

Algorithm to control the ASRS

Fabrication of an automated radionuclide separation system: Control software of ASRS

System control software: VIRTUAL INSTRUMENT

Graphical User Interface: easy to learn and use the software

Fabrication of an automated radionuclide separation system: Conceptual design of ASRS

- Automated column-based extraction chromatography
- ✓ 2 RNs: 8 samples in parallel with a single column arrangement
- ✓ 5 RNs: 4 samples in parallel with a tandem column arrangement

✓ PC control: system software (LabVIEW) for instrument control

Automated Sequential Radionuclide Separator: Fabrication of ASRS

Design of a solenoid valve driver circuit board to actuate solenoid valves

Automated Sequential Radionuclide Separator: Fabrication of ASRS

Design of a peristaltic pump driver circuit board to control peristaltic pumps

KAERI development history of Automated Radionuclide Separator

Minimized flow difference between the pumps Slow deterioration of the pump tubing

ASRS-eight pumps, 2014~2015

Commercialized models, 2016~

An automated separation system developed by KAERI: Modular Automated Radionuclide Separator for Sr-90

- ✓ Modular type system: control module, pump module, valve module, column module
- ✓ Four samples in parallel
- ✓ User friendly system software: Virtual Instrument
- ✓ Input parameters: volume, flow rate, reagent number in conditioning, rinsing, loading and elution steps

J Radioanal Nucl Chem (2015) 304:293-300 DOI 10.1007/s10967-014-3594-z

Rapid determination of radiostrontium in milk using automated radionuclides separator and liquid scintillation counter

Kun Ho Chung · Hyuncheol Kim · Jong Myoung Lim Young-Yong Ji · Geun-Sik Choi · Mun Ja Kang

Received: 1 September 2014/Published online: 19 September 2014 © Akadémiai Kiadó, Budapest, Hungary 2014

for ^{89/90}Sr (MARS Sr-90) has been developed for the rapid reaction of nuclear fuel in a nuclear reactor, are beta emitters and reproducible isolation of radiostrontium. The automated radiochemical method for separation and purifica-lysis. The conventional methods for the determination of tion of 8990Sr in milk was developed and applied to the radiostrontium in milk are using time consuming sample

Abstract A modular automated radionuclide separator literature [1-8]. Both 89Sr and 90Sr, produced by the fission that require radiochemical separation for radiometric ana-

Chung et al., J. Radioanal. Nucl. Chem., 2015, 304,293-30

An automated separation system developed by KAERI: Modular Automated Radionuclide Separator for Tc-99

- ✓ Modular type system: control module, pump module, valve module, column module
- ✓ User friendly system software: Virtual Instrument
- ✓ **GM counter:** monitor and select of ^{99m}Tc/⁹⁹Tc from the sample
- ✓ GM counter signal: Used to switch the 3W-FDV

.....

Automated Sequential Radionuclide Separator: Developed ASRS

System Design Specification	

Automated Sequential Radionuclide Separator: Developed ASRS

System Configuration

- The ASRS consists of three parts: ASRS-CS, ASRS-MC, ASRS-SS.
- The ASRS-CS means "Automated Sequential Radionuclide Separator-Control Software.
- The ASRS-MC means "Automated Sequential Radionuclide Separator-Main Controller, which is built in ASRS-SS.
- The ASRS-SS means "Automated Sequential Radionuclide Separator-Sequential chromatographic Separator.

Automated Sequential Radionuclide Separator: Developed ASRS

System Configuration

The *ASRS-SS* consists of five parts: Reagent bottle part (column #1~4 & column #5-8), Sample tube part (column #1~4 & column #5-8), Column part (column #1~4 & column #5-8), Pump part (pump #1~4 & pump #5~8), Elution tube part (column #1~4 & column #1~4 & column #5-8).

Automated Sequential Radionuclide Separator: Developed Control software of ASRS: VIRTUAL INSTRUMENT

Control Software Configuration

The *ASRS-CS* consists of three parts: Pump calibration mode, Calibration parameter calculation mode and Execution mode. Input parameters: Flow rate, Volume, Reagent, Tandem column mode, column number, elution bottle selection

Characterization of the ASRS: *Pump Calibration of ASRS*

- ✓ Flow rate characterization of the ASRS: excellent precision, accuracy and linearity
- ✓ Measured by weighing the masses of deionized water

Pump calibration_right module

Pump-8	n=3		
Set flow rate (mL/min)	Measured flow rate (mL/min)	std	rsd (%)
0.5	0.5058	0.0010	0.2057
1	1.0035	0.0019	0.1921
2	2.0053	0.0093	0.4640
3	3.0030	0.0087	0.2885
4	4.0042	0.0097	0.2415
5	5.0087	0.0086	0.1710

Characterization of the ASRS: System dead volume and memory effect of ASRS

✓ Line tubing was completely washed by 4 dead volume with 3M HNO₃

Memory effect of the ASRS

Optimization of an automated sequential radiochemical procedures: *Tandem column arrangement : TRU and Sr-spec resin*

Sequential analysis of Fe & Sr in water: a tandem column arrangement

Optimization of an automated sequential radiochemical procedures: *Tandem column arrangement : TRU and Sr-spec resin*

Flow rate effects on the method efficiency: separation of stable Fe & Sr, measured by ICP-OES

Optimization of an automated sequential radiochemical procedures: *Tandem column arrangement : TRU and Sr-spec resin*

Flow rate effects on the method efficiency: separation of Fe & Sr

- ✓ Sr recoveries exceeded 94%
- ✓ Fe recoveries showed 100%
- ✓ Over a wide range flow rate (1~5 mL/min)
- ✓ Highly reproducible (r.s.d. : less than 2%)
- ✓ In-house column packing: 2 mL dry pack cartridge
- ✓ Sufficient removal of interferences

Application of the **ASRS**: Determination of ⁵⁵Fe and ⁹⁰Sr by ASRS and LSC

	① Conditioning : 20 mL, 8M HNO ₃	✓ Tandem column mode
Sample tubes	② Loading : 20 mL, Sample	✓ TRU resin: 2mL B.V.
✓ Fe, Sr, U, Th, Ni, Ba: ~ 1mg	③ Rinsing-1 : 20 mL, 8M HNO ₃	✓ Sr-spec resin: 2 mL B.V.
✓ ⁵⁵ Fe : 13.99 Bq	(4) Rinsing-2 : 6 mL, 8M HNO ₃ 6 mL, 8M HNO ₃	✓ Flow rate: 3 mL/min
✓ ⁹⁰ Sr : 13.60 Bq	(5) Elution : 20 mL, 2M HNO ₃ 20 mL, D.I. water	✓ Separation time: 29 min

Application of the ASRS: Determination of ⁵⁵Fe and ⁹⁰Sr by ASRS and LSC

Performance test of ASRS : simultaneous measurement of ⁵⁵Fe & ⁹⁰Sr in spiked sample

Closing Remarks: Automated Radiochemical Separation!!!

- *ASRS*: fully automated column based extraction chromatography
- Flowrate characterization: excellent accuracy, precision and linearity, minimized flow difference between the 8 pumps (RSD: < 1%)
- System memory effect: washing the tubing with 4 dead volume
- Reliable and reproducible : recovery (>94%), relative bias(<3%), RSD (<2%, n=3)
- High-throuput: simultaneous 4 samples, up to 5 RNs, within 1 hour
- Rapid and safe : compared to conventional methods
- Less labour-intensive : fully automated radiochemical procedures
- Powerful and convenient tool: an automated chemical separation and purification of RNs at trace levels in environmental samples
- Suitable for a routine and an emergency responce: Rapid, reliable, high-throughput

Thank you

for your attention !

