

PLASTIC SCINTILLATORS and RELATED ANALYTICAL PROPOSALS for RADIONUCLIDE ANALYSIS

José F. García, Alex Tarancón, Héctor Bagán.

Departament d'Enginyeria Química i Química Analítica

LSC2017 Conference, 1-5 May, Copenhague

Begining of Plastic Scintillators

The Theory and Practice of Scintillation Counting

J.B. Birks

Pergamon Press 1964

Liquid Scintillation and Plastic Scintillation starts 70's

Liquid Scintillation

Focus: radionuclide analysis

- →LS Counter LS Spectrometers
- \rightarrow Scintillation Cocktails
- \rightarrow LSC success: . Sample preparation for measurements (easy and homogeneous)
 - . Many applications

Plastic Scintillation

Focus: large area detectors, dosimetry

Radionuclide analysis

BARCELONA

Plastic Scintillators and related analytical proposals

- Plastic Scintillators composition and sample preparation
- Scintillation mechanism
- Direct radionuclide determinations
- Selective radionuclide determinations
- Future challenges

Composition

- . Solvent: . Polystyrene, Polyvinyiltoluene \rightarrow linear (water insoluble)
 - . Divinylbenzene \rightarrow crosslinked (aggressive and organic insoluble)
- . Secondary solvent: Naphtalene, Disopropilnaphtalene
- . Scintillators: PPO, POPOP, p-T, bis-MSB

Format

- . Plastic scintillator microspheres (PSm) $(10 300 \ \mu m)$
- . Plastic scintillator foils (PSf) $\,(50-100~\mu m)$
- . Plastic scintillator pellets (3 mm)

Plastic Scintillators: composition and sample preparation

Sample preparation for measurement.

- Steps: . Plastic scintillator
 - . Sample solution
 - . Homogenization
- LS vs PS: . PS time 1
 - . PS difficulty to homogenize
 - . PS expensive than LS cocktails
 - . PS sample solution and PSm can be segregated (no mixed waste)
 - . PS sample stability (no phase separation)

Scintillation mechanism

Scintillation mechanism

Direct radionuclide determinations - PSm

9 LSC 2017

Direct radionuclide determinations - PSm

Alpha emitter radionuclides.

²⁴¹Am

10

Direct radionuclide determinations - PSm

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

Chemical Quenching.

Nitromethane : 0 - 7.57 µl/mL

³H PSm 400 – 500 μm

³⁶Cl PSm 120 – 180 μm

 $EFF \downarrow \rightarrow Quenching parameter (SQP) \downarrow$

Colour Quenching.

Methyl Orange : 0 – 0.014 g/L

³⁶Cl PSm 120 – 180 μm

 $EFF \downarrow \rightarrow Quenching parameter (SQP) \downarrow$

SQP 671 ± 3

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

UNIVERSITAT DE BARCELONA

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

PS Quenching.

Chemical Quenching \rightarrow Quenching parameter (SQP)

Colour Quenching \rightarrow Quenching parameter (SQP)

Particle Quenching \rightarrow Quenching parameter (density)

Optical Quenching \rightarrow Constant for a defined measurement conditions

Quenching by Montecarlo.

Pulse Shape distribution.

LS alpha >> beta -- PS alpha > beta.

- Delay depends on ³T concentration.

Characteristic Light Pulse Shapes of Alpha and Beta Pulses in LSC

- PS energy spreads faster by polymeric chains.
- Secondary solvent (Nafthalene, Disopropylnaphtalene) delays signal

Pulse Shape distribution.

Quantulus detector

Beta Classification LS = PS Alpha Classification PS↓ LS Alpha misclassified even PSA=0 (fast)

Pulse Shape distribution.

Quantulus detector

PSm: PPO+POPOP+ Naphtalene (120-150 μm)

Pulse Shape distribution.

Triathler detector

PSm(120-150 μm)

PPO+POPOP+ Naphtalene

Alpha / Beta discrimination

Pulse Shape distribution.

Triathler detector

PSm(120-150 μm) PPO+POPOP+ 2g Naphtalene

Integrating areas: Beta emitter: misclassification < 2% - EFF 90% Alpha emitter: misclassification 1 % - EFF 25%

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

Direct Radionuclide determinations - Applications

Applications

-Limited use for routine radionuclide determinations.

-Useful for specific determinations.

Direct Radionuclide determinations - Applications

Applications

High Salty matrices.

- LS phase separation
- PS stable
- Determination of Radiotracers in oil reservoirs
- Institute for Energy Technology (Norway) Radiotracer: S¹⁴CN⁻
- Matrix: NaClO₄ conc.
- Calibration: colour and particle quenching

	AA (dpm/g)	MA (dpm/g)
LS – IFE	4.23	0.55
PS - UB	$\textbf{4.32}\pm.016$	0.59 ± 0.04

Direct Radionuclide determinations - Applications

Applications

Continuous detection.

LS – measurement cell: sample + cocktail mixture

- <u>unstable</u> and reagents consumption, waste generation.

PS – measurement cell : sample + solid scintillator

- stable - EFF detection

. Chromatographic determinations

. Environmental determination (³H)

Multiple sample analysis.

. Microplates (labelled samples)

Plastic Scintillating resins – Extractive Scintillating resins

. Alpha and Beta spectra distribution + Scintillation \rightarrow

no selective technique / spectra overlapping.

. PS \rightarrow solid platform to implement separation procedures

Plastic Scintillating resin (PSresin)

Plastic Scintillating resins – Extractive Scintillating resins

. Alpha and Beta spectra distribution + Scintillation ightarrow

- no selective technique / spectra overlapping.
- . PS \rightarrow solid platform to implement separation procedures

PSm

Plastic Scintillating resin (PSresin)

Plastic Scintillating resins – Extractive Scintillating resins.

. **PSresin**: separation step + measurement preparation

Plastic Scintillating resins – Extractive Scintillating resins.

. **PSresin**: separation step + measurement preparation

- . Time reduction
- . Reagents and man power reduction
- . Waste reduction
- . Development in progress
- . Cost ?

Preparation approaches.

. Approaches to incorporate the selective capability:

- Immobilization: selective extractant (solvent) coating the PSm or CPS.
- Imprinted polymers: selective cavity on the PSm or CPS
- **Covalent bounding**: selective extractant bounded on the PSm or CPS surface.

Immobilization.

⁹⁰Sr in Water

Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol

Separation conditions: LiNO₃ 6 M

	Act (dpm)	Act calc (dpm)	Error (%)
	8.02	8.18	1.94
Drinking water	7.77	7.66	-1.44
	7.66	7.54	-1.51
	7.88	8.06	2.29
Sea Water	8.00	7.80	-2.56
	7.70	8.01	4.09
	7.86	7.84	-0.28
River Water	7.75	7.60	-1.94
	7.77	7.72	-0.61

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

Immobilization.

Radiotracer S¹⁴CN in oil reservoir.

Extractant: Aliquat 336

Separation conditions: water

	Conductivity	ТОС	Activity (Bq L ⁻¹)	
Sample	(mS cm⁻¹)	(mg L ⁻¹)	PS resin	IFE
1	52.1 ± 0.1	13.6 ± 0.3	$\textbf{2.89} \pm \textbf{0.14}$	2.98 ± 0.09
2	51.5 ± 0.2	18.4 ± 0.3	2.01 ± 0.04	$\textbf{2.21}\pm\textbf{0.06}$
3	50.8 ± 0.2	$\textbf{22.4} \pm \textbf{0.7}$	1.00 ± 0.09	1.02 ± 0.07
4	51.3 ± 0.1	39.2 ± 0.6	1.42 ± 0.02	1.36 ± 0.05
5	51.5 ± 0.2	18.4 ± 0.7	2.66 ± 0.08	$\textbf{2.76} \pm \textbf{0.08}$

Immobilization.

⁹⁹Tc in water and urine.

Extractant: Aliquat 336

Separation conditions: HCl 0.1M

Sample	Activity	Activity Calc	Error
	(dpm L⁻¹)	(dpm L⁻¹)	(%)
Sea Water	24,3	23,0	-5,3
Sea Water	24,3	25,1	3,3
Sea Water	24,2	22,8	-6,2
Urine	0,43	0.44	2,4
Urine	0,46	0,42	-6.5

Immobilization.

²¹⁰Pb in water.

Extractant: 4,4'(5')-di-t butylcyclohexane 18-crown-6 1M Octanol

Separation conditions: HNO₃ 2M

Comple	Activity	Activity Calc	Deviation
Sample	(dpm/mL)	(dpm/mL)	(%)
Ebro river	10,1	10,8	-7,0
	10,1	11,0	-9,2
	10,1	9,8	3,6
Subterranean	10,9	11,7	-7,0
water	11,4	11,4	0,2
	11,4	11,8	-4,1
Congost river	11,0	11,4	-4,2
	10,4	10,7	-3,3
Diastic Scintillators, J.E.G.	11,4	11,3	0,7

Imprinted.

Synthesis in presence of a template.

-Selectivity based on steric impediment

- No breakthrough volume
- Use of generic extractants

In progress: PSresin ⁶³Ni

Imprinted.

Synthesis in absence of template.

Polymer Free Volume – Porosity

PSm

Imprinted.

Synthesis in absence of template.

SEM

AFM

In progress: ²²²Rn

Covalent Bounding.

Selective extractant bounded on the PS surface.

- No breakthrough volume

Studies in progress:

- CPS ²³³U
- CPS ⁶³Ni

Automation.

- -Routine analysis improves by using automated systems.
- Inclusion of PSresin cartridges fits this approach

Summary and Future challenges.

Summary.

- Alpha and Beta emitters can be determined by PS (Low beta emitters)
- Calibration by using Quenching Parameters
- Alpha/ Beta discrimination is possible.
- Selective determinations are possible

- Selective Plastic Scintillating Resins.

BARCELONA

Plastiprocedures of a tractant into population of the second seco

Summary and Future challenges.

Future challenges.

- Selective Plastic Scintillating Resins.
 - . Procedures of extractant incorporation
 - . Controlled porous materials
- New Plastic Scintillating formats.
 - . Foils
 - . Monolites
- Automation.
- New application fields.
 - . Routine control
 - . Medical
 - . Decommissioning
 - . Emergency situation

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

Plastic Scintillators and related analytical proposals

2nd International Workshop on Plastic Scintillation in Practice

Barcelona, Spring 2018

José F. García, Alex Tarancón, Héctor Bagán

Thanks for your attention.

Plastic Scintillators, J.F. García, A. Tarancón, H. Bagán LSC2017 Conference, 1-5 May, Copenhague

