Computational Modeling of Organic Fluor Molecules

Jake Nichols

Department of Environmental Engineering and Earth Sciences

Clemson University

Clemson, South Carolina, USA

Motivations

- 2-(1-naphthyl)-5-phenyloxazole (αNPO)
- 2-(1-naphthyl)-4-vinyl-5- phenyloxazole (vNPO)
- 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4 oxadiazole (PBD)
- 2-[4-(4'-vinylbiphenylyl)]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole monomer (vPBD)
- 5-(4-Bromophenyl)-3-(4-ethylphenyl)-1-phenyl-4,5-dihydro-1Hpyrazole (PZ1)
- 3-(4-Ethylphenyl)- 5-(4-vinylphenyl)-1-phenyl-4,5-dihydro-1Hpyrazole (vPZ1)
- 3-(4-Ethylphenyl)-5-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (PZ2)

Motivations

- Synthesis of new organic scintillators can be expensive.
 - Is the chemical structure stable?
 - Does the scintillator fluoresce around 420 nm?
- Modeling organic scintillating molecules can be a cost effective method for studying photo physical behavior.

Jablonski Diagram

Computational Theory

• To model electron transfer processes we need to solve the Schrödinger equation:

$\widehat{H}(\{r\},t)\Psi(\{r\},t) = E(\{r\},t)\Psi(\{r\},t)$

 \widehat{H} : An operator that represents the interactions in the system

 Ψ : Describes the electron distribution

E: The total electron binding energy

- Energy functionals are used to complete the Hamiltonian.
- Basis sets approximate the wave function by generating the atomic orbitals in the system.

Computational Theory

Implicit Solvation

 Polarized Continuum Model (PCM): Treats the bulk solvent environment as a continuum of dielectric medium.

Hybrid Solvation

- Hybrid methods adopt explicit solvent molecules in addition to implicit models.
 - PCM with single explicit solvent.
 - ONIOM two-layer technique

Hypotheses

- Time Dependent Density Functional Theory (TD-DFT) can be used to predict the fluorescent behavior of organic fluorophores using appropriate computational parameters.
 - The incorporation of long-range energy functionals will produce better results than traditional functionals (B3LYP).
 - Implicit solvent environments will correctly predict general trends shown in experiments.
 - The addition of explicit solvent molecules will further enhance the predictability of the model.

Tasks

• Part 1: Energy Functional Effects

Compare traditional B3LYP with long range corrected functionals.

- Part 2: Impacts of Solvation
 - Implicit (PCM) Solvent Effects.
 - Hybrid Solvation (α NPO and vNPO in toluene).

vNPO Absorption

vNPO: Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO)

Orbital Analysis: Energetics

	Calculated Energy (eV)			
Functional	НОМО	LUMO	HOMO-LUMO Gap	Optical Gap
B3LYP	-5.36	-1.82	3.54	3.15
M06-2X	-6.68	-0.86	5.82	4.02

Tasks

- Part 1: Energy Functional Effects
 - Compare traditional B3LYP with long range corrected functionals.
- Part 2: Impacts of Solvation
 - Implicit Solvation (PCM) Solvent Effects.
 - Hybrid Solvation (α NPO and vNPO in toluene).

anpo Absorption

Chloroform (ϵ = 4.7113) Diethyl ether (ϵ = 4.2400) Toluene (ϵ = 2.3741) Cyclohexane (ϵ =2.0165)

and Remission

Chloroform (ϵ = 4.7113) Diethyl ether (ϵ = 4.2400) Toluene (ϵ = 2.3741) Cyclohexane (ϵ =2.0165)

-----Chloroform -----Cyclohexane -----Diethyl Ether -----Toluene

PZ1 Absorption

Chloroform (ϵ = 4.7113) Diethyl ether (ϵ = 4.2400) Toluene (ϵ = 2.3741) Cyclohexane (ϵ =2.0165)

PZ1 Emission

Chloroform (ϵ = 4.7113) Diethyl ether (ϵ = 4.2400) Toluene (ϵ = 2.3741) Cyclohexane (ϵ =2.0165)

Implicit Solvation \rightarrow Explicit Solvation

- PCM model could predict electrostatic differences in solvents.
- PCM model could not predict specific solute-solvent interactions.

Tasks

- Part 1: Energy Functional Effects
 - Compare traditional B3LYP with long range corrected functionals.
- Part 2: Impacts of Solvation
 - Implicit Solvation (PCM) Solvent Effects.
 - Hybrid Solvation (αNPO and vNPO in toluene).

αNPO ONIOM two-layer

Two approximations made:

- 1. Hold the fluor static during optimization.
- 2. Hold explicit toluene static during optimization.

αNPO PCM-Hybrid Ground State Optimization

Approximation made:

1. Where to coordinate the toluene before optimization.

vNPO PCM-Hybrid Ground State Optimization

Approximation made:

1. Where to coordinate the toluene before optimization.

Hybrid Solvation vs. Implicit: αNPO and vNPO Absorption

anpo pcm-SS vs. pcm-Hybrid

<u>Stokes Shifts</u> PCM-implicit: 80.35 nm PCM-hybrid: 73.96 nm

— PCM — PCM-Hybrid

vNPO PCM-SS vs. PCM-Hybrid Absorption and Emission

<u>Stokes Shifts</u> PCM-implicit: 80.77 nm PCM-hybrid: 72.76 nm

— PCM — PCM-Hybrid

Hybrid Solvation

- ONIOM hybrid technique has flaws.
 - Approximations make system non-real.
 - Only LR excitations are possible.
 - Currently not able to produce emission spectra in G09.
- PCM-hybrid technique need additional work.
 - Returns spectra that differ from the PCM SS and ONIOM results.
 - No drastic approximations.
 - Can produce emission spectra.
 - Unknown coordination of explicit solvent can lead to misleading results.

²⁷ PCM vs Experimental Chemical Effects

²⁸ PCM vs Experimental Chemical Effects

Summary

- Energy Functional Effects
 - Need long range corrected functional.
- Solvation Effects
 - PCM model can predict general trends.
 - Could predict electrostatic differences in solvents, but not solute-solvent interactions.
 - Correctly identified reactivity between fluor molecules
 - Did not produce the experimental stokes shift observed between αNPO that vNPO.
 - PCM-hybrid technique need additional work.
 - Returns spectra that differ from the PCM SS and ONIOM results.
 - Improved values of absorption and emission wavelength.
 - Did not produce the experimental stokes shift observed between α NPO that vNPO.
 - Unknown coordination of explicit solvent can lead to misleading results.
 - ONIOM hybrid technique has flaws.
 - Approximations make system non-real.
 - Only LR excitations are possible.
 - Currently not able to produce emission spectra in G09.

Acknowledgements

- My advisor, Dr. Shuller-Nickles, for invaluable support and guidance.
- Dr. DeVol and Dr. Seliman for their collaboration.
- CCIT for their generous access to the Palmetto Cluster Supercomputer.
- U.S. Nuclear Regulatory Commission for funding my research (Contract #NRC-HQ-12-G-38-0016).

References

- Seliman, Ayman F., et al. "Development of Polymerizable 2-(1-Naphthyl)-5- Phenyloxazole Scintillators for Ionizing Radiation Detection " Journal of Materials Chemistry C 3 (2015): 7053. Print.
- Bliznyuk, Valery N., et al. "New Efficient Organic Scintillators Derived from Pyrazoline." American Chemical Society Applied Materials and Interfaces 8.20 (2016): 12843-51.

Future Work

- Increase the number of explicit toluene in PCMhybrid technique from 1 to 2-3 in order to address toluene coordination issues.
- Basis Set Effects
 - Incorporate Diffuse Functions.
- Gaussian 16 software upgrade
 - Electronic Energy Transfer (EET): Energy transfer from an explicit solvent to the fluor is coupled.
 - Updates on ONIOM for emission spectra and computational time improvements.

³⁶ Initial Results – Basis Set Effects

