
Computational Modeling of 
Organic Fluor Molecules

Jake Nichols
Department of Environmental Engineering and Earth Sciences

Clemson University
Clemson, South Carolina, USA



Motivations
• 2-(1-naphthyl)-5-phenyloxazole (αNPO)
• 2-(1-naphthyl)-4-vinyl-5- phenyloxazole (vNPO)
• 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4 oxadiazole (PBD)
• 2-[4-(4’- vinylbiphenylyl)]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole 

monomer (vPBD)
• 5-(4-Bromophenyl)-3-(4-ethylphenyl)-1-phenyl-4,5-dihydro-1H-

pyrazole (PZ1)
• 3-(4-Ethylphenyl)- 5-(4-vinylphenyl)-1-phenyl-4,5-dihydro-1H-

pyrazole (vPZ1)
• 3-(4-Ethylphenyl)-5-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-

pyrazole (PZ2)
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Motivations 
• Synthesis of new organic scintillators can be 

expensive.
– Is the chemical structure stable?
– Does the scintillator fluoresce around 420 nm? 

• Modeling organic scintillating molecules can be a 
cost effective method for studying photo physical 
behavior.
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αNPO vNPO

PBD vPBD

PZ1* vPZ1
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Jablonski Diagram
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Fluorescence:
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Computational Theory
• To model electron transfer processes we need to 

solve the Schrödinger equation: 
�𝐻𝐻( r , t)Ψ( r , t) = E( r , t)Ψ( r , t)

�𝐻𝐻: An operator that represents the interactions in the system
Ψ: Describes the electron distribution
E: The total electron binding energy

• Energy functionals are used to complete the 
Hamiltonian.

• Basis sets approximate the wave function by 
generating the atomic orbitals in the system.
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Computational Theory
Implicit Solvation

• Polarized Continuum 
Model (PCM): Treats the 
bulk solvent environment 
as a continuum of 
dielectric medium.

Hybrid Solvation

• Hybrid methods adopt 
explicit solvent molecules in 
addition to implicit models.

• PCM with single explicit 
solvent.

• ONIOM two-layer technique
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Hypotheses

• Time Dependent Density Functional Theory (TD-
DFT) can be used to predict the fluorescent 
behavior of organic fluorophores using 
appropriate computational parameters. 
– The incorporation of long-range energy functionals 

will produce better results than traditional functionals 
(B3LYP).

– Implicit solvent environments will correctly predict 
general trends shown in experiments.

– The addition of explicit solvent molecules will further 
enhance the predictability of the model.
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Tasks

• Part 1: Energy Functional Effects
– Compare traditional B3LYP with long range 

corrected functionals. 

• Part 2: Impacts of Solvation
– Implicit (PCM) Solvent Effects.
– Hybrid Solvation (αNPO and vNPO in toluene).
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vNPO Absorption
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vNPO: Highest Occupied Molecular Orbital (HOMO) 
and Lowest Unoccupied Molecular Orbital (LUMO)
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Double Bond Lone Pair



Orbital Analysis: Energetics
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Functional 
Calculated Energy (eV) 

HOMO LUMO HOMO-LUMO Gap Optical Gap 
B3LYP -5.36 -1.82 3.54 3.15 

M06-2X -6.68 -0.86 5.82 4.02 
 



Tasks

• Part 1: Energy Functional Effects
– Compare traditional B3LYP with long range 

corrected functionals. 

• Part 2: Impacts of Solvation
– Implicit Solvation (PCM) Solvent Effects.
– Hybrid Solvation (αNPO and vNPO in toluene).
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αNPO Absorption
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αNPO Emission
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PZ1 Absorption
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PZ1 Emission
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Implicit Solvation  Explicit Solvation

• PCM model could predict electrostatic differences in 
solvents.

• PCM model could not predict specific solute-solvent 
interactions.
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Tasks
• Part 1: Energy Functional Effects

– Compare traditional B3LYP with long range 
corrected functionals. 

• Part 2: Impacts of Solvation
– Implicit Solvation (PCM) Solvent Effects.
– Hybrid Solvation (αNPO and vNPO in toluene).
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αNPO ONIOM two-layer
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Two approximations made:
1. Hold the fluor static during 

optimization.
2. Hold explicit toluene static 

during optimization.



αNPO PCM-Hybrid Ground State Optimization
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Approximation made:
1. Where to coordinate the toluene before optimization.



vNPO PCM-Hybrid Ground State Optimization
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Approximation made:
1. Where to coordinate the toluene before optimization.



Hybrid Solvation vs. Implicit:
αNPO and vNPO Absorption
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αNPO PCM-SS vs. PCM-Hybrid
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vNPO PCM-SS vs. PCM-Hybrid 
Absorption and Emission
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Stokes Shifts
PCM-implicit: 80.77 nm
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Hybrid Solvation

– ONIOM hybrid technique has flaws.
• Approximations make system non-real.
• Only LR excitations are possible.
• Currently not able to produce emission spectra in G09.

– PCM-hybrid technique need additional work. 
• Returns spectra that differ from the PCM SS and 

ONIOM results.
• No drastic approximations.
• Can produce emission spectra.
• Unknown coordination of explicit solvent can lead to 

misleading results.
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PCM vs Experimental Chemical Effects27

Calculated in toluene.

Experimental in methyl acetate.

PZ2: 7-8 nm shorter 
absorption than PZ1 and vPZ1.
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PCM vs Experimental Chemical Effects28

Calculated in toluene.

Experimental in methyl acetate.

Higher energy absorption of 
NPO’s vs PZ Material.
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PCM vs Experimental Chemical Effects29

Calculated in toluene.

Experimental in methyl acetate.

-Higher energy absorption PBD and vPBD than 
NPO’s and PZ Material.
-Similar trends between PBD and vPBD
absorption.
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PCM vs Experimental-Toluene30
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Summary
• Energy Functional Effects

– Need long range corrected functional. 
• Solvation Effects

– PCM model can predict general trends.
• Could predict electrostatic differences in solvents, but not solute-solvent 

interactions.
• Correctly identified reactivity between fluor molecules

– Did not produce the experimental stokes shift observed between αNPO that vNPO.

– PCM-hybrid technique need additional work. 
• Returns spectra that differ from the PCM SS and ONIOM results.
• Improved values of absorption and emission wavelength.
• Did not produce the experimental stokes shift observed between αNPO that vNPO.
• Unknown coordination of explicit solvent can lead to misleading results.

– ONIOM hybrid technique has flaws.
• Approximations make system non-real.
• Only LR excitations are possible.
• Currently not able to produce emission spectra in G09.
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Questions? 
34



Future Work
• Increase the number of explicit toluene in PCM-

hybrid technique from 1 to 2-3 in order to 
address toluene coordination issues.

• Basis Set Effects
– Incorporate Diffuse Functions.

• Gaussian 16 software upgrade
– Electronic Energy Transfer (EET): Energy transfer 

from an explicit solvent to the fluor is coupled.
– Updates on ONIOM for emission spectra and 

computational time improvements.
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Initial Results – Basis Set Effects36
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