

Adaptation of PTB's analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB

Cheick THIAM, Christophe BOBIN and Jacques BOUCHARD

LSC 2017, Copenhagen, 1-5 May 2017

list ceatech

General introduction

TDCR method (Triple to Double Coincidence Ratio) based on Cherenkov counting

- Cherenkov radiation: discovery by Cerenkov (1937). Phys. Rev. 52, 378.
- Theoretical interpretation by Frank and Tamm (1937) J. Phys. 1, 439–454.
 - Electromagnetic shockwave resulting from a charged particle moving in a material faster than the velocity of light in that medium
 - ✓ In radionuclide metrology only electron or positron can produce Cherenkov light
 - ✓ Photons emitted as a cone with spanning angle θ : $\cos \theta = \frac{1}{n\beta}$
 - ✓ Condition of Cherenkov emission: $n\beta \ge 1$ where $\beta = v/c$
- Main physical proprieties:
 - ✓ Threshold effect (for electron in water: $n \sim 1.33$; $E_{th} \sim 260$ keV)
 - ✓ Directional character (not isotropic emission)
 - ✓ Large spectral bandwidth (comprised between UV and visible wavelengths)

list ^{Ceatech}

General introduction

TDCR method (Triple to Double Coincidence Ratio) based on Cherenkov counting

- Applied for β -emitting radionuclides, use existing LS counters:
 - ✓ Direct measurements with aqueous solutions (easy source preparation)
 - ✓ Drawback: counting efficiencies lower than LS counting (due to the threshold effect)
 - ✓ Natural discrimination for low-energy β particles and for alpha particles

- As for LS, the free parameter is adjusted for the calculation of the detection of double coincidences using experimental *TDCR* values
 - ✓ The model has to take into account the physical properties of Cherenkov emission

General introduction

Towards model of Cherenkov counting for radionuclides standardization:

- A free parameter model of light emission (to compute Cherenkov counting efficiencies) first proposed by Grau Carles and Grau Malonda (2006)
 - ✓ Developed for Cherenkov counting standardization with detection systems using two PMTs

- Kossert (2010) and Kossert et *al.* (2014): extends this model for standardizations with TDCR detection systems
 - ✓ Based on adaptation the statistical model usually carries our for LS counting
 - ✓ New empirical formula to account for anisotropy of Cherenkov emission

• Bobin al.(2010) and Thiam et al.(2011) describe a stochastic approach based on Monte Carlo simulation using Geant4 code

TDCR-Cherenkov model

Monte Carlo Model using Geant4 code: Comprehensive modelling of detection setup

- Simulates interactions of ionizing radiation and propagation of Cherenkov photons from their creation to the production of photoelectrons in PMTs
 - ✓ Geometry modelling, EM physics
 - ✓ Optical processes: refraction, reflection, transmission and absorption
 - Model works for measurements with glass vials


```
Geometry model with Geant4
```

Detector parameter	Material	Optical parameter	
PMT-window ($\emptyset = 52 \text{ mm}$)	Fused silica	Dispersive refractive index (DRI) ~ 1.47 at 400 nm and 1.64 at 160 nm Surface type (ST): dielectric-dielectric. Skin: polished	
PMT-photocathode (\emptyset = 46 mm)	Bi-alkali (K ₂ CsSb)	DRI ~ 2.5 at 430 nm, Harmer et al. (2006). ST: dielectric-dielectric	
Optical chamber	Teflon®	ST: dielectric-metal, Lambertien-type reflectivity 95%	
Vial (1 mm layer)	Borosilicate	DRI ~ 1.52 at 430 nm. ST: dielectric-dielectric, Skin: polished	
Aqueous solution (15 mL)	Water	DRI ~ 1.33 at 2600 nm	

list ^{Ceatech}

TDCR-Cherenkov model

Monte Carlo Model using Geant4 code

- Detection efficiency variation implemented using the PMT-defocusing technique
- Activity calculated with TDCR-Geant4 model validated for an aqueous solution of ⁹⁰Y

More details on: Appl. Radiat. Isot. 68 (2010) 2366-2371.

list ceatech

TDCR-Cherenkov model

Monte Carlo Model using Geant4 code

- Well validated for several radionuclides
 - ✓ ⁹⁰Y, ³²P, ¹¹C, ⁶⁸Ga/⁶⁸Ge. Appl. Radiat. Isot. 68 (2010) 2366–2371
- Applicable also for liquid scintillation counting
 - ³H, ⁶³Ni... Appl. Radiat. Isot. 70 (2012) 2195–2199
- $4\pi\beta(LS)\gamma$ coincidences method
 - ✓ ⁵⁶Fe, ⁵⁴Mn, ¹⁴C. Appl. Radiat. Isot. 109 (2016) 319–324
- Useful to study the contribution of several parameters and physical effects in counting
 - ✓ Volume effect of the source and vial
 - \checkmark Contribution of bremsstrahlung, 511 γ -annihilation
 - Variation of optical parameters
- C++ programing, long computing time

list ^{CE2tech}

TDCR-Cherenkov model

Adaptation of PTB's analytical model at LNHB

- Objective: test an extension of PTB model for TDCR-Cherenkov measurements by considering physical properties of the detection setup in use at LNHB
- Calculation implemented using MATLAB computing environment
- The three-PMTs counter used for measurements: equipped with X2020Q PMTs (Photonis)
 - ✓ Fused silica window, large spectral sensitivity (160 to 600 nm)
 - ✓ Quantum efficiency ~ 24% (300 to 400 nm)

3-PMT TDCR at LNHB

Spherical optical chamber made of Teflon® (~ 95 % Lambertian reflexion)

TDCR-Cherenkov model

Adaptation of PTB's analytical model at LNHB

 Measurements carried out with plastic vials to attenuate the geometry dependence of coincidence counting

Comparison between glass-vials and plastic-vials for measurements of ⁹⁰Y

➔ Significant shift observed

- Because of geometrical effect due to their diffusive wall, reflection and refraction process taking place at the wall/air boundary are modified
 - → Better detection efficiencies are obtained with usual LS plastics vials

l. st

Clatech

TDCR-Cherenkov model

Description of the analytical modelling

Using Frank and Tamm (1937) theory; the number of Cherenkov photons dk emitted by an e^{-} or e^{+} along a path dx for an energy E and λ is given by:

$$\frac{dk}{dxd\lambda} = 2\pi\alpha_{FS}\frac{1}{\lambda^2}\left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)$$

 α_{FS} : fine structure constant

 $n(\lambda)$: refractive-index of transparent medium

In term of energy variation (dE/dx from ESTAR database) the equation became:

$$\frac{dk(E,\lambda)}{dEd\lambda} = 2\pi\alpha_{FS}\frac{1}{\lambda^2}\left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)\frac{1}{\rho \, dE/dx}$$

The mean number of photoelectrons distributed in PMTs is obtained by the integration of the equation between

 E_c and the energy released in the aqueous solution.

- ✓ Considering PMT-spectral response
- \checkmark Taking into account the variation of the Cherenkov threshold E_c with decreasing photon wavelengths

NOTE: Optical properties of vials are not taken into account

list ceatech

TDCR-Cherenkov model

Description of the analytical modelling

The empirical probabilities R_1 , R_2 and R_3 to have at least one count obtained as for LS counting i.e. we can apply an adjusting free parameter (q) (based on a Poisson distribution assumption)

Anisotropy described with $\alpha(E_{el})$, expressed as a function of Ω

→ Formula slightly different so as to get an equi-probable distribution of photons between PMTs by setting the free parameter x = 1

list ^{CE2tech}

TDCR-Cherenkov model

Description of the analytical modelling

The calculation of detection efficiencies of triple and double coincidences ε_T and ε_D

→ Implemented as for LS measurements using the probabilities R_1 , R_2 and R_3 and the probability density function $S(E_{el})$ related to the energy distribution of particle

 $\varepsilon_T = \int_{E_c}^{E_{\text{max}}} S(E_{\text{el}}) R_1 R_2 R_3 dE_{\text{el}}$

$$\varepsilon_D = \int_{E_c}^{E_{\text{max}}} S(E_{\text{el}})(R_1R_2 + R_2R_3 + R_1R_3 - 2.R_1R_2R_3)$$

→ The detection efficiency determined by adjusting the free parameter to match the measured TDCR values Related publications:

Kossert, Appl. Radiat. Isot. 68 (2010) 1116–1120.

Kossert, Grau Carles, Nähle, Appl. Radiat. Isot. 86 (2014) 7-12.

LSC 2017 • 1-5 May 2017 • Copenhagen

Application of TDCR-Cherenkov modelling

Activity measurements of solution of dissolved ⁹⁰Y-labelled microspheres

- Standardization of ⁹⁰Y-labeled microspheres (SIR-Spheres, Sirtex)
 - ✓ Medical device used in Selective Internal Radiation Therapy (SIRT)
 - Biocompatible microspheres (20 60 μm) containing ⁹⁰Y
 - ✓ high-energy β^2 ; main branch (99.98%); Emax ~ 2.28 MeV, Emean ~ 927 keV
- Measurements carried out after dissolution of microspheres
 - ✓ Avoid problems of non-homogeneity
 - Dissolved solution subsequently diluted to reduce colour quenching
 NOTE: More details in Lourenço et al. (2015) Appl. Radiat. Isot. 97, 170-176.
- Sources preparation with plastic vials
 - ✓ 15 mL of carrier solution (25 mg/g of Y in 0.04 M HCl)
 - ✓ 9 mg of dissolved and diluted solution of ⁹⁰Y-microspheres
- Results compared to classical TDCR LS counting with glass vials
 - ✓ 10 mL of Hionic-Fluor +9 mg of dissolved solution of ⁹⁰Y-microspheres

After dissolution (no residues)

Activity measurements of solution of dissolved ⁹⁰Y-labelled resign microspheres

- Three sources measured in standard plastic vials (with out coated Teflon in wall)
 - ✓ The TDCR values: comprised between 0.8 0.815, corresponding detection efficiencies : ~ 72%
- Two sources measured using Teflon coated plastic vials
 - \checkmark The TDCR values: ~ 0.8, corresponding detection efficiencies : ~ 71.5
 - ✓ The activity concentration with TDCR-Cherenkov consistent with classical TDCR LS
 - Relative difference: 0.2% with standard plastic vials; 0.26% with Teflon coated plastic vials
- Uncertainty budget of ⁹⁰Y measurements using the analytical modelling

Uncertainty component	Comments	
Measurement variability	Standard deviation of the measured sources	0.1
Weighing	Gravimetric measurements (pycnometer method)	0.1
Live time	1-MHz frequency clock used for the live-time	0.01
Decay correction	Half-life of ⁹⁰ Y: 2.6684 (13) d	0.05
Analytical modelling	Conservative estimation	0.5
Background		0.05
Relative combined standard uncertainty		

Application of TDCR-Cherenkov modelling

Activity measurements of ⁸⁹Sr

- Suited radionuclide for Cherenkov measurements
 - ✓ High-energy β ; main branch (~ 99.99%) with E_{max} ~ 1495 keV, E_{mean} ~ 585 keV
- Sources preparation
 - ✓ Four sources measured in standard plastic vials
 - ✓ 15 mL of carrier solution (10 mg/g of Sr in HCl 0.1 M) + 30 to 100 mg of 89 Sr solution
- Results:
 - ✓ Maximum *TDCR* values: ~ 0.665
 - ✓ Corresponding detection efficiencies computed with the analytical modelling: ~ 53%
 - ✓ Activity concentration given by TDCR-Cherenkov: 0.26% lower than the result with TDCR LS
 - ✓ Main uncertainty component due to the analytical modelling: 0.5%

Activity measurements of ⁶⁸Ga in a solution of ⁶⁸Ge/⁶⁸Ga in equilibrium

- The activity measurements carried out in the framework of a BIPM international comparison using a radioactive solution prepared at NIST
- ⁶⁸Ge/⁶⁸Ga: favorable to standardization by Cherenkov measurements via ⁶⁸Ga
 - ✓ Mainly decaying by β^+ emissions ~ 88.9%; E_{max} ~ 1899 keV; $T_{1/2}$ ~ 67.83 min
 - ✓ Take advantage of the Cherenkov threshold to avoid the contribution of EC emissions of ⁶⁸Ge

- ✓ Six sources in Teflon coated plastic vials
- ✓ 15 mL of carrier solution (65 mg/g of Ge⁴⁺ and Ga³⁺ in 0.5 M HCl) + 10 mg of 68 Ge/ 68 Ga aliquot

Activity measurements of ⁶⁸Ga in a solution of ⁶⁸Ge/⁶⁸Ga in equilibrium

- Results:
 - ✓ Efficiency calculation with analytical model take into account the two β^+ spectra and related branching ratios ($\beta_{0,0}^+$, E_{max} ~ 1899 keV; ~ 87.7 %; $\beta_{0,1}^+$, E_{max} ~ 821.7 keV, 1.2 %)
 - The contribution of 511 keV annihilation photons also considered using the resulting energy spectrum in the aqueous solution (obtained by Monte Carlo simulation)
 - ✓ Maximum *TDCR* value: 0.746
 - ✓ Corresponding detection efficiency computed with the analytical modelling: 73.4%
 - ✓ Contribution of 511 keV γ -photon interactions: ~ 0.2%
 - → TDCR-Cherenkov compared with $4\pi(LS)\beta-\gamma$ anticoincidence measurements
 - ✓ Both results are in good agreement with 0.16% relative difference

Discussion and conclusion

- First developed at PTB for TDCR-Cherenkov measurements, the analytical model has been well adapted to operate with a TDCR counter in use at LNHB
 - ✓ Implementation inspired from the classical statistical model used for LS counting
- The modelling is based on several approximations
 - ✓ Optical properties of the vials are not taken into account (optical transmittance, refractive indices)
 - The anisotropy of emission is considered by means of empirical expressions and by using an additional free parameter
 - ✓ Depending on $E(e^{-}/e^{+})$, x and q, the mean number of photoelectrons (therefore probability to obtain a count in PMTs) is based on Poisson-distribution
 - The contribution of different physical effects may compensated by additional diffusing-effect when using plastics vials

Discussion and conclusion

- Despite approximations, Cherenkov measurements using the analytical model give consistent results with a conservative model-uncertainty of 0.5%
 - The model successfully tested at LNHB for three standardizations of three radiopharmaceuticals:

 $^{90}\text{Y},\,^{89}\text{Sr}$ and ^{68}Ge

Reliable activity measurements already reported by Kossert et al. (2014):

```
<sup>32</sup>P, <sup>89</sup>Sr, <sup>90</sup>Y, <sup>204</sup>Tl, <sup>106</sup>Rh...
```


(1) dissolved and diluted solution of 90 Y microspheres (2) aqueous solution of 90 Y

(*) plastic-vial without Teflon coating in inner wall

Thank you

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019