

Rapid on-site screening of aqueous waste streams using dip stick technology and liquid scintillation counting

Phil Warwick University of Southampton

GAU-Radioanalytical

- Extensive radioanalytical and geochemical expertise
- •Well equipped radioanalytical laboratories accredited to ISO17025:2005
- Undertakes approximately 300 commercial contracts (> 3000 samples) p.a.
- •Comprehensive multi-nuclide radiometric and mass spectrometric capability

Role of the GAU

Radioanalytical Laboratories

Research themes

Nuclear Forensics / homeland security

Remediation technologies

Environmental studies / isotopics

Need for screening techniques

Emergency

• Rapid screening to support / inform emergency response.

Routine

- Routine screening of DTM radionuclides to confirm absence in wastes.
- Confirmation of stability of radionuclide vector (fingerprint).
- Use in combination with more conventional characterisation methodologies.

Strategy of research

Aims

- To develop a rapid screening technique for radionuclides in aqueous wastes and acid digests.
- To develop supporting radionuclide detection hardware and identification / confirmation strategies.
- To demonstrate and validate these techniques for in-situ or on-site applications.

Target radionuclides (nuclear)

	Gamma (ETM)	Beta / EC (DTM)	Alpha (DTM)
Fission products	⁹⁵ Zr/ ⁹⁵ Nb, ¹⁰⁶ Ru, ¹³⁷ Cs, ¹⁴⁴ Ce	⁹⁰ Sr, ⁷⁹ Se, ⁹³ Zr, ⁹⁹ Tc, ¹⁰³ Ru, ¹⁰⁷ Pd, ^{121m} Sn, ¹²⁶ Sn, ¹²⁹ I, ¹³⁵ Cs, ¹⁴⁷ Pm, ¹⁵¹ Sm	
Activation products	 ²²Na, ³⁹Ar, ⁵⁴Mn, ⁶⁰Co, ⁶⁵Zn, ⁹³Mo, ^{93m}Nb, ⁹⁴Nb, ^{108m}Ag, ^{110m}Ag, ¹²⁵Sb, ¹³³Ba, ¹³⁴Cs, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ^{166m}Ho. 	³ H, ¹⁴ C, ³⁶ Cl, ⁴¹ Ca, ⁵⁵ Fe, ⁵⁹ Ni, ⁶³ Ni, ⁹³ Zr	
Actinides	²⁴¹ Am	²⁴¹ Pu	 ²²⁸Th, ²³⁰Th, ²³²Th, ²³⁴Th, ²³¹Pa, ²³³Pa, ²³²U, ²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁷Np, 238Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴²Pu, ²⁴²Am, ²⁴³Am, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm

Other target radionuclides

NORM

Natural radionuclides including ²¹⁰Pb and Ra isotopes

Why LSC?

- High beta efficiency even for low energy beta.
- High alpha efficiency.
- Potential for alpha / beta discrimination.
- Spectral information.
- Well established and widely available technology.

Radionuclide identification

Liquid scintillation analysis provides spectral information that can be used to determine β energy.

Effect of quench on peak position

Problems with beta energy measurement

- **Peak position** is dependent on both the beta energy and quench level of the sample.
- Increases in quench will shift the beta spectrum to lower energies, reducing the apparent beta energy of the nuclide.
- To overcome this, the ratio of two quench parameters (SQPE & SQPI) are used to determine the beta energy.

Dual quench parameter and energy

- LSC Quench Parameter models works well for determining energies of pure beta emitting nuclides
- A refinement of the model for peak shape is needed to permit identification of alpha and beta/gamma emitting nuclides
- The peak shape is determined by adapting one of the quench parameters [SQPI(95)/SQPI(50)] to give a 'peak shape factor'
- The peak shape factor is used in conjunction with a quench parameters to differentiate between alpha, low energy and high energy beta emitting radionuclides

Peak shape

Testing the method

- Eight test water samples prepared using a mixture of alpha and beta emitting radionuclides.
- Four samples prepared at activity concentrations equivalent to the WHO drinking water action levels.
- Four samples prepared at activity concentrations equivalent to 10% of the action level.
- Samples for LSC prepared by mixing 8ml of test solution with 12ml Gold Star and counting for 60 minutes on a Quantulus liquid scintillation counter.

** Note correct position of S2, S3 & S4 due to a background correction *

SQPI (95) / SQPI (50)

Development of test stick technologies

Quantitative extraction is not required

GAU Radioanalytical Laboratories $A_{stick} \propto A_{aq}$

Extractant materials

• Commercially available

Sr-resin TRU-resin TEVA resin Actinide resin TK100 resins

• Designed

Metal organic frameworks (MOFs) Ion imprinted polymers (IIPs) Functionalised silicas Nano materials e.g.FeOOH, AuNP 4,4'(5')-di-t-butylcyclohexano 18-crown-6

Diluent: 1-octanol

Southampton

Single extractant stick (SES)

- Test stick loaded with selective extractant.
- Extractant targets <u>one</u> radionuclide of interest.
- Total radionuclide activity measured on strip using either LSC or plate reader.
- Measured activity on stick is proportional to the activity of the target radionuclide in solution.

Nuclide ID based on extractant (EX₁) selectivity

Nuclide activity based on measured CPM

Multi-extractant stick (MES)

- Different extractants are distributed in regions of the test stick to detect <u>multiple</u> radionuclides.
- Each extractant targets a particular radionuclide.
- The activity on the stick is measured using a plate reader to provide activity and distribution information.
- The activity is proportional to the activity of each radionuclide in solution.

Laboratories

• The position of the activity on the test stick is diagnostic of the radionuclide.

Nuclide ID based on location on test stick

Nuclide activity based on measured CPM

- The stick is layered with different extractant and designed so that the solution interacts separately with each extractant in turn as it diffuses through the multiple layers.
- The layers are then separated prior to measurement.
- This approach could be used to exclude a species from the final extractant to overcome potential interferences.

Uptake of radionuclide on test stick

Loading on stick (g)

Bq on strip per Bq/g in aqueous phase at equilibrium for a range of distribution coefficients

In practice

 $A_{stick} = f(A_{aq}, k_{D}, \frac{dk}{dt}, m_{s}, V_{eff}, t)$

SES Sr-stick preparation

Rate of reaction

Effect of particle size

2.1 Bq/ml ⁹⁰Sr 5ml aqueous (8M HNO₃) Non-stirred

SES Sr-stick response

From 8M HNO₃

SES TEVA-stick response

SES Ac-stick response

 242 Pu solution activity = 2.5 Bq/g in 0.05M HNO₃

Degradation of alpha spectrum as ²⁴²Pu is still entrained within resin.

After 7 days, the Pu+extractant has leached into the scintillation cocktail resulting in less alpha degradation

Uptake of radionuclide on test stick

Next stages

- Development of sample preparation procedures.
- Evaluation of extractant systems in terms of selectivity, sensitivity and uptake kinetics.
- Testing of multi extractant systems and spatial readers.
- Response over extended activity ranges.
- Modification of response by matrix elements.
- Development of integrated radionuclide identification.

Acknowledgments

- NDA for funding a PhD relating to this work
- EU Framework 7 'Secureau'.
- Triskem for provision of many of the extractants being evaluated.
- LSC2017 committee for the invitation to present.

