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“The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it
depends on detailed knowledge of the nature of the measurand and of the measurement
method and procedure used. The quality and utility of the uncertainty quoted for the result of a
measurement therefore ultimately depends on the understanding, critical analysis, and integrity
of those who contribute to the assignment of its value.”

EURACHEM/CITAC. Quantifying uncertainty in analytical measurement.
Tech. Rep. Guide CG4, EURACHEM/CITEC, 2000. Second edition.



Guide to Uncertainty in Measurement
(GUM, JCGM 100:2008)

» Originally published in 1993 by ISO

» Responsibility for maintaining transferred to Joint Committee on
Guides in Measurement (JCGM), chaired by the BIPM, in 1997

» JCGM 100:2008. Guide to the expression of uncertainty in
measurement (GUM)

» Associated documents

» JCGM 101:2008. Supplement 1 to the GUM: Propagation of
distributions using a Monte Carlo method Sl cl measurcaient

of uncertainty in measurement

» JCGM 102. Supplement 2 to the GUM: Models with any number of O =/ L

Guide pour 'expression de l'incertitude de

output quantities ok
» JCGM 103. Supplement 3 to the GUM: Modelling (in preparation)
» JCGM 104. An introduction to the GUM and related documents




Premises

» Quality of a measurement can be
characterized by considering systematic and
random errors equally

» Corrections for systematic effects also have random
component

» It is impossible to determine how well the value
of the measurand is known, only how well it is
believed to be known

» Requires infinite amount of information to be defined

» Since this is Impossible, some uncertainty is always
present




Basic procedure
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Develop measurement model (relationship between input
variables and measurand)

Determine estimates for input values
Evaluate standard uncertainty on input estimates
Evaluate covariances

Calculate result of measurement (estimate of measurand from
measured inputs)

Determine combined standard uncertainty from the
uncertainties (and covariances) on input estimates

Determine coverage factor, if needed

Report value with its associated uncertainty, explaining how
measurement result and uncertainty estimate were
determined




LSC measurements of radioactivity

A counting process (photons, electrons, particles, etc.)

General measurement model

R(t) = C/T
=Rg + Ag(M/M)e I §if; ... + A g.....

Detection efficiency and correction factors

If we could count every event, our job would be easy. Most effort
goes into figuring out what we are missing!



Developing a measurement model
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CIEMAT/NIST efficiency tracing method
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CIEMAT/NIST method -- measurement & uncertainty
model —
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Triple-to-Double Coincidence Ratio (TDCR)
Method

» Uses a specially-designed three photomultiplier tube (PMT) instrument

» Coincidences refer to the photons emitted from the scintillator — NOT the
radionuclide!
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Metrology with LSC

Key Is to look for components of uncertainty

P Use different spectrometers

P differing characteristics: log vs. linear amplification;
detection thresholds; dead times; etc.

» Use a variety of LS cocktail compositions to obviate (or
account) chemical composition effects

» Different scintillation fluids
» Vary carrier, water concentrations

» Use a wide quenching / efficiency range so that
extrapolated result is efficiency independent

P Use different techniques for varying detection efficiency
» Use both CIEMAT/NIST and TDCR whenever possible



Estimating standard uncertainties

» Type A evaluations

» Experimental variance s?(q) and experimental standard deviation
s(q) indicate dispersion about central (mean) value

» Experimental variance of the mean s?(g) and experimental
standard deviation of the mean s(g) indicates how well g
estimates u,.

» Type B evaluations
» Non-statistical methods
» Can still be based on data from experiment
» Often involves experience or even “guesses”

» In both cases, we are trying to find quantities that are similar to
variances (or standard deviations)

» This terminology is going away with upcoming revisions



ldentifying major uncertainty components: our
experience

Component Description Magnitude Comments

Measurement Variability on A due to uncertainty on repeated 0.1%to 0.3% Embodies other

Repeatability measurements of a single source (without replacement) components
(background, stability,
time, etc.)

Measurement Variability on A due to uncertainty on measurements of 0.1%to0.3% Embodies other

Reproducibility multiple sources (with same composition) components
(background, time,
etc.)

Source stability Variability on A due to (uncorrected) time-dependent - Data should not be
effects used if stability effects
are major
component.

Efficiency dependence Variability on A due to efficiency dependence on QIP <0.1%to0.5% Typically larger for
(should be independent) TDCR, EC nuclides

Nuclear and atomic Variability on A due to uncertainty on input data usedin 0.1 % to 0.5 % Typically larger for
data model calculations TDCR, EC nuclides

These are merely typical/nominal values for demonstration! The magnitudes are
highly variable and may not be present in every experiment.

Statistical tests (F, t, etc.) are useful to determine if effects are present.



Methods for evaluating uncertainties

Analytical form

eSensitivity analysis

— % are sensitivity coefficients

—Estimate (or calculate) u?(x;)

—Sensitivity coefficient can be evaluated by noting effect of x; + u(x;)
ony

Monte Carlo

—In some techniques, it is impossible or impractical to write the model
in a closed, analytical form (complexity of input data, “black box”
instrumentation, etc.)

—Approach is to assemble large number of input data sets based on
uncertainties of the input values

—Assumes u(x;) is normally distributed about x;




Example : half-life correction
%4Cu: 12.7004(20) h

flori o~ In@)t/T12
Analytical method.: )
Whecay = | M| uF
. [e—ln(Z)t . (—ln(Z) t>ru2
dTi, \ Tijp2 Lk
ey = (M) (25 ur,,

For a 2-hour decay correction, Ugec,, = (0.8966)(0.008595 h* )(0.0020 h) = 0.0015 %

Sensitivity factor method: o~ IN(2)(21)/(12.7004h) — ) 896593 - IN(2)(2NW)/(12.7024h) — ( 896608

Taking ratio gives A = 0.0017 %



Monte Carlo uncertainty analysis

» Uncertainty on measurand for some components cannot always be
written as simple equation.

» Examples
» Nuclear and atomic input data
» Model used for efficiency calculation
» Methods involving complicated fitting or equation solving processes
» Input quantities where the PDF is asymmetric

» Monte Carlo approaches are good for these cases (but can almost
always be used even for simple ones)



"Cu-64EC2°

BASIC DATA

Example: input data for TDCR efficiency
calculations with MICELLE?2

"atomic number AL ‘Atomic data : 'NI_ATOM. DAT'
"WK,WLL,WL2 ,wL3 H 406, 001, . .
'F12,F13,F23 2 o0, .550, .

"PKLIL1,LZ2,L3,M1,M2,M3,M4,M5: L0677, .OF5%6, . o . g g -, £ g EC DECAY

"PKLINL N2 .N2.01.02.03 : -0015, .0000, . : i : )
"PKL2L2,L3,M1,M2,M3, M4, M5 L0136, .3211, . 3 b } ; PK,PL1,PL2,PM E 0.884,.099,.0,.0162
"PKLZNL.N2 N3 .N5.01.03 : 0007, L0000, . ' 1 !

"PKL3L3,M1,M2,M3,M4,M5 : .1783, .0155,
"PKL3N1,N2,N3,N4,N5,01,02, 03 .0012, .0000, . : : : e
"PKM1M1,M2 ,M3,N1,N2,N3 : .0012, .0011, . - o - EETAIDECHY.
"BKM2M3 N1, N2 : .0040, .0001, . .
'PKM3M3,M4,M5,N1,N2,N3 s . 0023, .0003, . 1 5 S Y ‘Endpoint energy

Mass number
"BLIL2ML,M2,M3,M4 M5 2 .0000, .1937, . b i .baughter nucl. atomic number
"PLIL2NL..N7,01..06,P1.. : .0196, .0000, . ! iy - i E L i E L i E L , .00(Forbiddenness
"PL1L3ML,M2,M3,M4,M5 : .1932, .0982, . ; ; shape factor coefficients
"PLIL3N1..N7,01..07,P1.. : .0147, .0000, . . - . i i i i i i i , - 00

"PLIMIML,M2,M3,M4 M5 : L0677, 1223, .
"PLIMINL. . N7,01..05,P3 : .0099, .0000, . ; 4 ; e : e i e e - GAMMA TRANSITIONS

"PLIM2M3..M5,N1..N7,01,05 .0036, .0018, . , 0078, . ¢ e . Hary R e T
-itﬁmiﬂi;Hé;ﬂf:?t;?éingOI z ;8822; ;22233 i ! i . i - A i 310 "PIK,PIL1,PIL2,PIL3,PIM (1) : 0. 0001112 0.0000109,0.,0.,0.000019
PLIM5M5,N1. . N7,01. .05 : .0341, .0077, . . . : . : . : : = \PGAM,EGAM (2] :
"PLININL,NZ,N4,N2N4 01, NdNd : .0004, .0000, . ;5 : 5 ;o : = ;o : = \PIK,PIL1,PILZ,PIL3,PIM (2) : 0-,U-=0-,0-,U-
' PGAM, EGAM 3 : 0.,0.
"PL2L3M4,M5,N1. .N7,01..05,P2; .0000, .0000,1. i : i s ‘o o ‘o o ‘o i , .00(PIK,PIL1,PIL2,PIL3,PIM (3) : 0.,0.,0.,0.,0.
"PLZMIML. .M5,N2. . N4,02 .0041, .0774,
'PL2M2M2 M3, M4, M5 : . 0665, .2296, . ;
"PL2M2NL. .N7,01..05,P2 : .0064, .0000, . g g i i i i i i i , .00
'PL2M3M3. .M5,N1..N5,02,04 .0064, .0956, . - A o S o S o Faen
'PL2M4M4 ,M5,N1..N7,02..05 .0689, .2186, . ; ; ; ; ; ; i i % i ., .DDPECAY SCHEME
'PL2ZM5M5,N2. .N6,02,04 = . 0095, .0000, . : : : : : 1 PURE EC
"PL2NINZ ,NZN2Z, N4 , NAN4 : . 0000, .0000, . - : - an - i - S EC-IC/GAMMA
IC,/GAMMA
"PL3MIML. .M5,N2..N7,03 : .0042, .0029, . P . : e & e - ey - EC-IC,/GAMMA-IC/GAMMA
"PLIM2M3. .M5,N1,N3,N5,N7,03 : .1252, .0054, . : 1 o Tl IC /GAMMA-TC / GAMMA
TR R MY LY . g ¢ BETA-IC/GAMMA
BETA-IC,/GAMMA-TIC /GAMMA
PURE BETA
EC-IC/GAMMA-IC/GAMMA-IC /GAMMA
IC/GAMMA-IC/GAMMA-IC /GAMMA
PURE BETA+
BETA+-IC/GAMMA

Not only do all these quantities have (sometimes significant)
uncertainties, many are also correlated!




Approach

» Identify the mean value for all input quantities, uncertainties
» Identify/assign the PDF for the uncertainty (Normal, Gamma, etc.)

» Construct large number of input data sets by drawing random input
values from distributions of each variable

» Beware of correlated variables, normalizations!
» Run calculation for all data sets

» Beware of potentially biased sampling!

Example: Run of 8500 MICELLE2
calculations for 44Cu, drawing random
variables from mean and standard
uncertainties for nuclear and atomic
data (assume Normal distribution).




\ 4

Correlation

Example: TDCR variables strongly correlated

For R//Rp = K, what is u,?

We don’t know functional form (or distribution) for
calculating activity from the counting data alone

Can be calculated using Monte Carlo methods,

but uncorrelated are needed

Data can generally be de-correlated using a linear

transform

» Mahalanobis
» Cholesky e
See Poster 143
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Conclusions

» Uncertainty analysis is a vital component to any measurement and
needs to be done correctly and carefully

» Key to a meaningful uncertainty analysis is a complete
understanding of the measurement and the relationship between
variables.

» Every uncertainty analysis is different (i.e., no cookbook)
» Need to |look for uncertainty components

» Many methods exist to evaluate magnitude of uncertainty
components, including Monte Carlo

» Methods exist to reduce/eliminate correlation between variables




Suggested reading
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Abstract
Liquid scintillation counting is a very powerful technique for the activity determination of
a number of radionuclides. In radionuclide metrology, the TDCR method and the CIEMAT/
NIST efficiency tracing technique are widely used in many laboratories.

Both methods require rather complex calculation techniques to derive the counting
efficiency of the nuclide under study.

This article explores the various sources of uncertainty that should be considered when
applying these two techniques, and focuses on possible ways to evaluate them. Concrete
examples are provided within the paper.
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