Boron-10 and Lithium-6 Loaded Scintillator for Neutron Detection

Xiongxin Dai

China Institute for Radiation Protection, Taiyuan, China

LSC2017, Copenhagen

May 1st, 2017
Outline

• Motivation
• Preparation of scintillator
• Pulse shape discrimination
• Tests with neutron
• Summary
Neutron detection has broad applications in many fields for various purposes.

- Radiation safety
- Homeland security
- Neutron imaging

He-3 based detectors have been extensively used for neutron detection because of their good neutron-to-gamma discrimination capability.

Due to global shortage of He-3, an alternative neutron detecting material for He-3 replacement needs to be developed.
Neutron capture isotope

• ^{10}B (3838b, natural abundance 19.9%)

\[
^{10}\text{B} + \text{n} \rightarrow ^7\text{Li}^* (0.84 \text{ MeV}) + \alpha (1.47 \text{ MeV})
\]

\[
\quad \quad \rightarrow ^7\text{Li} + \gamma (0.48 \text{ MeV})
\]

\[
^{10}\text{B} + \text{n} \rightarrow ^7\text{Li} (1.02 \text{ MeV}) + \alpha (1.78 \text{ MeV})
\]

(93.7%)

(6.3%)

• ^6Li (940b, natural abundance 7.5%)

\[
^6\text{Li} + \text{n} \rightarrow ^3\text{t} (2.05 \text{ MeV}) + \alpha (2.73 \text{ MeV})
\]

• The light yield of the 2-MeV triton (on ^6Li) is nearly 10x higher than that of the 1.5-MeV alpha (on ^{10}B).

• The neutron capture signature from ^6Li is well separated from the noise and most background sources.
Requirements for scintillator

• High light yield

• High loading capacity for neutron capture materials

• Good optical transparency

• Good discrimination of neutron signal from noise and gamma-beta background radiation

• Long-term chemical and optical stability

• Safe: high flash point and low toxicity

• Low cost

• High refractive index & low afterglow for neutron imaging
Preparation of LS

Boron loaded liquid scintillator
- Solvent: LAB, DIN, etc
- Fluors: PPO + bis-MSB
- B: o-carborane ($C_2H_{12}B_{10}$), 5% boron (w/w)

Lithium loaded gel scintillator
- Solvent: LAB, DIN, etc
- Fluors: PPO + bis-MSB
- Li: LiCl, ~1.5% Li (w/w)
- Tissue equivalent
- Ongoing tests

![Graph showing the relationship between Li concentration and ABS at 420nm](image-url)
B-loaded LS: Pulse shape discrimination

Bi-212, 6.21 MeV

Po-212, 8.95 MeV

Beta/alpha discrimination of B-loaded LS spiked with Pb-212
B-loaded LS: Pulse shape discrimination

\[
FOM = \frac{(\text{Alpha} - \text{Beta})_{\text{separation}}}{\text{Bandwidth}(R_{\text{alpha}}) + \text{Bandwidth}(R_{\text{beta}})}
\]

\[
R = \frac{S_{\text{tail}}(t_Q \rightarrow t_{\text{end}})}{S_{\text{total}}(t = 0 \text{ ns} \rightarrow t_{\text{end}})}
\]

FOM = 1.75

Fig. 5. Average of ratio R for alpha and beta pulses.
B-loaded LS: Tests with neutron beam

- Tests at the National Research Universal (NRU)
- Neutron wavelength of 2.37 Å (E=14.56 meV)
B-loaded LS: Tests with neutron beam
Methods for preparation of boron-loaded liquid scintillator and lithium-doped gel scintillator were developed for neutron detection.

The boron-loaded LS has been characterized, and the results confirmed that it is suitable for neutron detection in a gamma ray environment using PSD technique.

Tests on the Li-doped gel scintillator is on-going.

Promising candidates for replacement of He-3 for neutron detection.
Acknowledgements

Chalk River Laboratories/Canadian Nuclear Laboratories:

- Ghaouti Bentoumi
- G. Jonkmans
- Liqian Li
- Bhaska Sur

NRC-CNBC:

- Helmut Fritzsche
THANKS FOR YOUR ATTENTION!

NO QUESTIONS.