

Determination of ⁹⁰Sr in seawater for routine monitoring and emergency preparedness

01 May, 2017 Hyuncheol Kim

Emergency Normal SEAWATER Radiostrontium 90Sr, 89Sr

Normal Emergency SEAWATER Radiostrontium 90Sr, 89Sr DGA resin Cation ex. resin Sr resin TRU resin

Normal

Emergency

Global average value : ~ 1 mBq/kg
(Aoyama & Hirose, 2004)

Coastal area in Korea: 0.4 – 1.1 mBq/kg
(KINS, 2015)

Normal

Emergency

Global average value : ~ 1 mBq/kg
(Aoyama & Hirose, 2004)

Coastal area in Korea: 0.4 – 1.1 mBq/kg
(KINS, 2015)

Jolume Jolume Reduction

Normal

Emergency

Precipitation

```
SrCO_3 \downarrow

Sr^{2+} / Ca(OH)_2 \downarrow

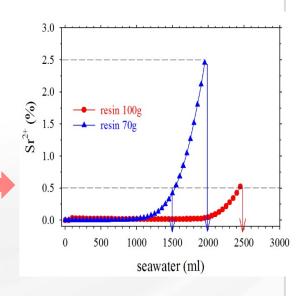
Sr(NO_3)_2 \downarrow

Sr^{2+} / Ba(Ra)SO_4 \downarrow
```

Sr²⁺ in seawater: ~ 8 mg/kg

Normal

Emergency


Cation ex. resin

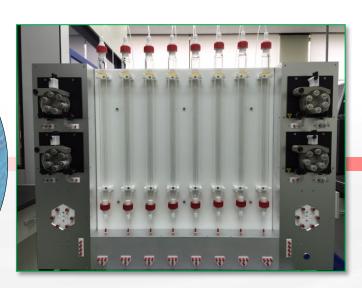
SEAWATER

40-80 L

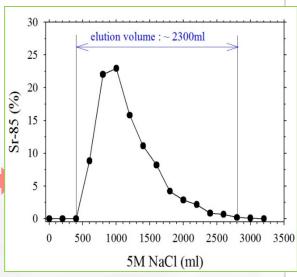
$$R-SO_3 \cdot \cdot M + Sr^{2+}$$

 $\leftrightarrow R-SO_3 \cdot \cdot Sr + M^+$

Dowex50Wx8 (400 g) 10 L of seawater 10 L → 2.3 L


Normal

Emergency


Cation ex. resin

SEAWATER

40-80 L

$$R-SO_3 \cdot \cdot M + Sr^{2+}$$

 $\leftrightarrow R-SO_3 \cdot \cdot Sr + M^+$

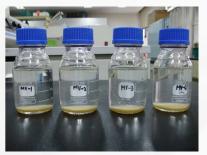
Dowex50Wx8 (400 g) 10 L of seawater 10 L \rightarrow 2.3 L

IAEA/AQ/27

Emergency

IAEA Analytical Quality in Nuclear Applications Series No. 27

Rapid Simultaneous Determination of 89Sr and 90Sr in Milk: A Procedure Using Cerenkov and Scintillation Counting



IAEA/AQ/27 (2013)

Milk 250 ml (or Milk Powder) + Cation ex. resin (30ml) + Sr resin (3g)

(*Chung et al.* 2015)

⁹⁰Sr in seawater

Normal

Emergency

IAEA/AQ/27

IAEA Analytical Quality in Nuclear Applications Series No. 27

Rapid Simultaneous Determination of ⁸⁹Sr and ⁹⁰Sr in Milk: A Procedure Using Cerenkov and Scintillation Counting IAEA/AQ/27 (2013)

Milk 250 ml (or Milk Powder) + Cation ex. resin (30ml) + Sr resin (3g)

ALMERA Analytical Method Development Activity: Validation of the Procedure for the Rapid Simultaneous Determination of 89Sr and 90Sr in Seawater Samples

Dear Mr Kim.

In the frame of the ALMERA analytical method development activities, the validation of the procedure for the rapid simultaneous determination of ⁸⁹Sr and ⁹⁰Sr in seawater samples is being organized following the development of a detailed procedure by an ALMERA expert group.

Following your expression of interest and selection for the validation phase, we are pleased to send you the validation sample set as well as the associated documentation.

The documentation consists of:

- This accompanying letter;
- The detailed procedure for the rapid simultaneous determination of ⁸⁹Sr and ⁹⁰Sr in seawater samples to be used in the frame of the validation phase;
- A reporting form,
- The procedure IAEA/AQ/27 "Rapid Simultaneous Determination of ⁸⁹Sr and ⁹⁰Sr in Milk: a Procedure Using Cerenkov and Scintillation Counting" (sent by email).

ALMERA method validation (2016)

seawater 100 ml SrCO₃ ↓ + Sr resin (2 ml)

⁹⁰Sr in seawater

Normal

Emergency

IAEA/AQ/27

IAEA Analytical Quality in Nuclear Applications Series No. 27

Rapid Simultaneous Determination of 89Sr and 90Sr in Milk:
A Procedure Using Cerenkov and Scintillation Counting

IAEA/AQ/27 (2013)

Milk 250 ml (or Milk Powder)

+ Cation ex. resin (30ml) + Sr resin (3g)

ALMERA Analytical M for the Rapid Simultane

Carbonate precipitate

Dear Mr Kim,

In the frame of the ALMERA analytical method development activities, the validation of the procedure for the rapid simultaneous determination of ⁸⁹Sr and ⁹⁰Sr in seawater samples is being organized following the development of a detailed procedure by an ALMERA expert group.


Following your expression of interest and selection for the validation phase, we are pleased to send you the validation sample set as well as the associated documentation.

The documentation consists of:

- This accompanying letter;
- The detailed procedure for the rapid simultaneous determination of ⁸⁹Sr and ⁹⁰Sr in seawater samples to be used in the frame of the validation phase;
- A reporting form.
- The procedure IAEA/AQ/27 "Rapid Simultaneous Determination of ⁸⁹Sr and ⁹⁰Sr in Milk: a Procedure Using Cerenkov and Scintillation Counting" (sent by email).

ALMERA method validation (2016)

seawater 100 ml SrCO₃ ↓ + Sr resin (2 ml)

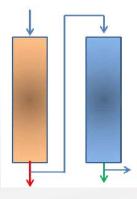
Object

More Simple Faster More Convenient

Pretreatment

(Concentration)

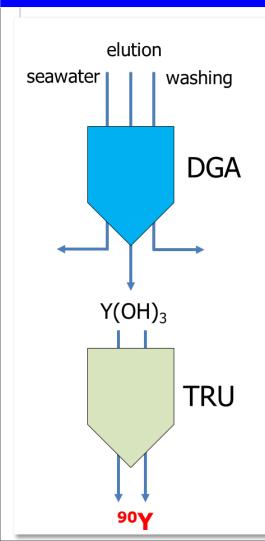
Groundwater /Seawater

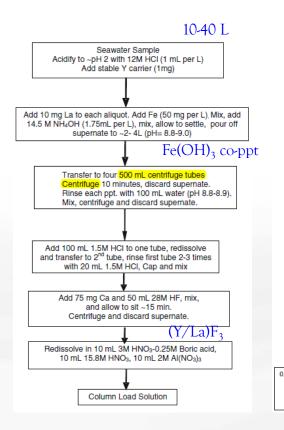

(Purification, separation from interferences)

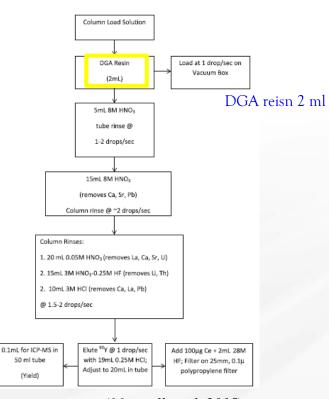
Separation of Ca, Ba, Ra, Pb, and Y

Analysis

(Liquid Scintillation Counter Gas Proportional Counter)

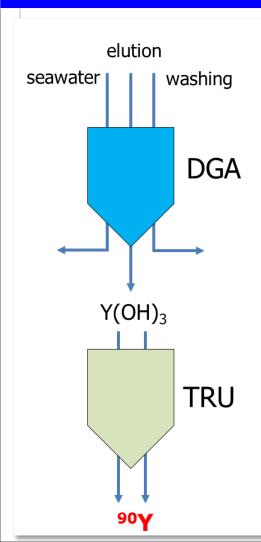


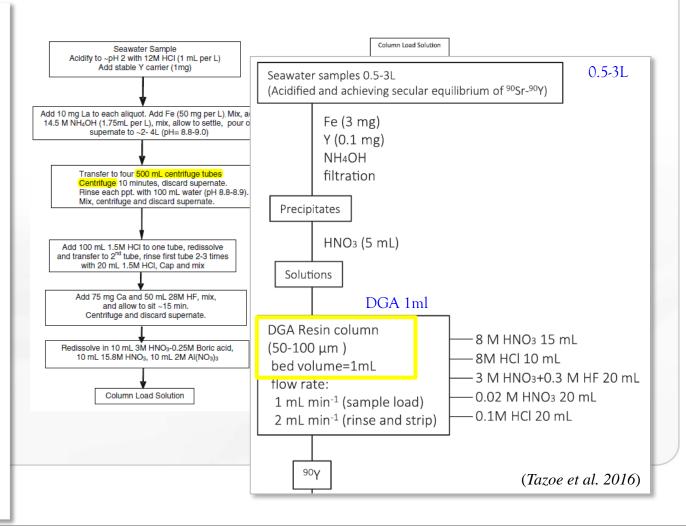




Normal

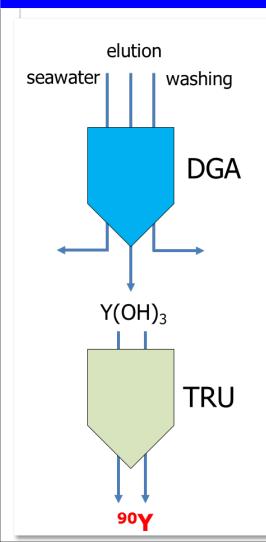
Emergency

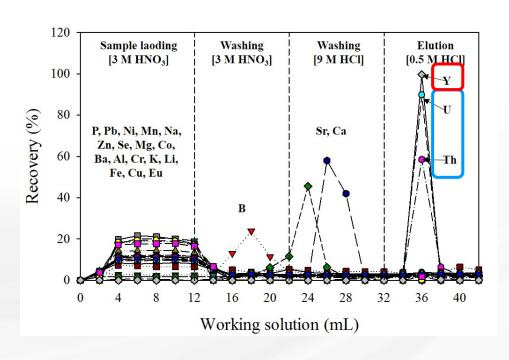




(Maxwell et al. 2015)

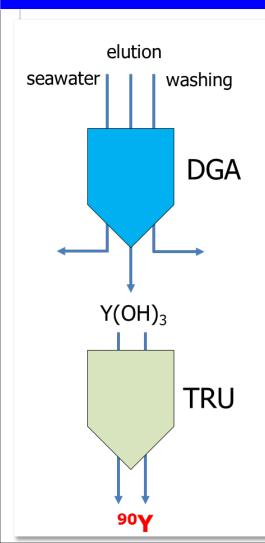
Normal

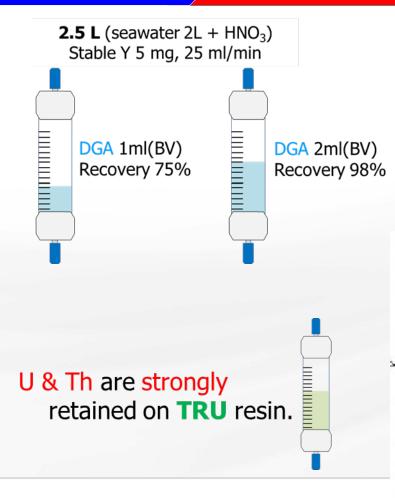

Emergency



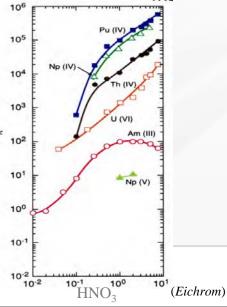
Normal

Emergency

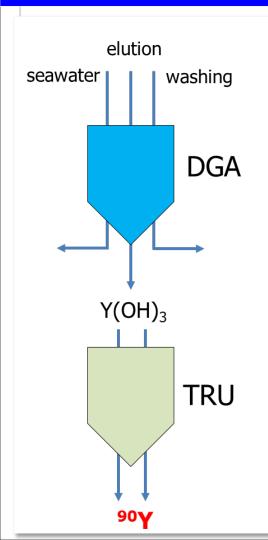


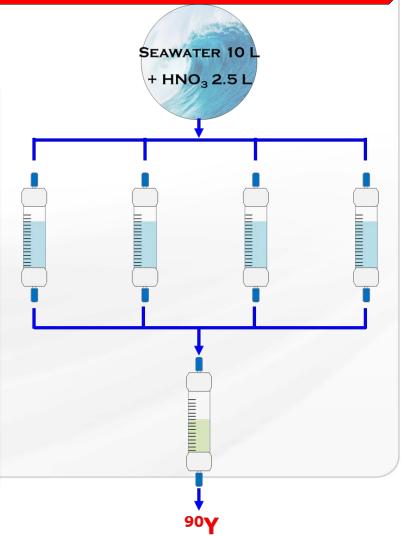


DGA resin 2 ml (BV) (Jung et al. under review)


Normal

Emergency





Normal

Emergency

12.5 L (Seawater **10** L+HNO₃) DGA (2.5 ml, BV) x 4 **W1**: 3 M HNO₃ 5 BV W2: 9 M HCl 5 BV E : 0.5 M HCl 5 BV at pH 10, Y(OH)3 ↓ TRU (2 ml, BV) $L: 3 M HNO_3 5 BV$ W: 3 M HNO₃ 5 BV

Normal

Emergency

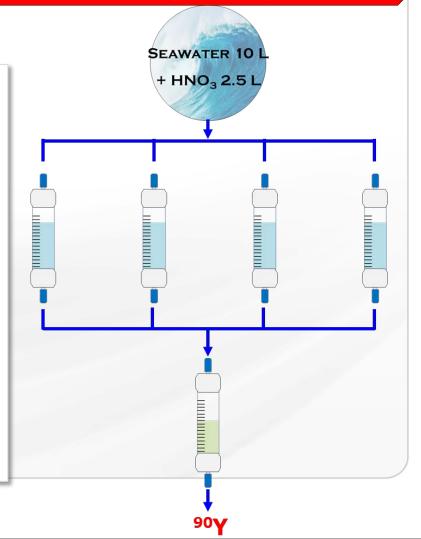
Result

Seawater 10 L

(12.5 L)

DGA 2.5 ml(BV) x 4

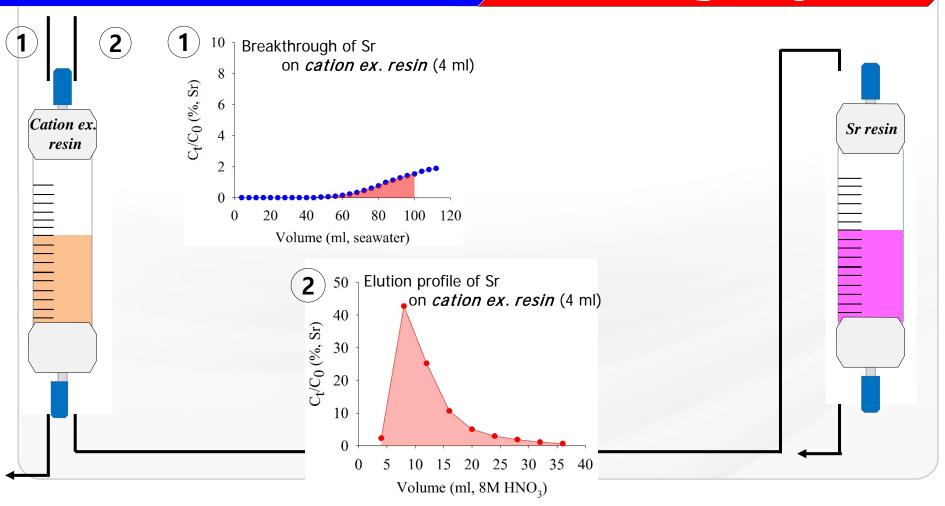
Stable Y 5 mg


Recovery Y 80 %

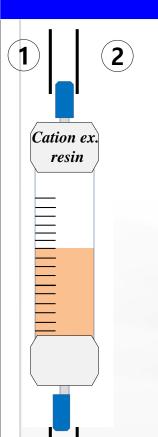
Relative error 5 %

Time 3 h

(with four pump)


Flow rate 25 ml/min

Normal **Emergency** SEAWATER Cation ex. 100 ml Sr resin resin


Normal

Emergency

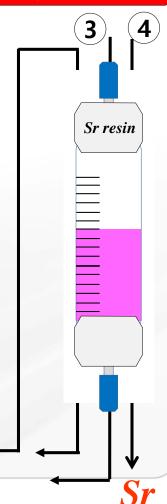
Normal

Emergency

Seawater: 100 ml

Cation ex. resin (4 ml, BV)

Conditioning: DIW 5 BV (de-ionized water)


Loading : seawater 100 ml (filtered)

Cation ex. resin + Sr resin (2 ml, BV)

Washing 1 : 8M HNO₃ 9 BV

Only Sr resin (2ml, BV)

Washing 2 : 8M HNO₃ 4 BV Elution : DIW 5 BV

Normal

Emergency

Sr resin

Result

Cation ex.

resin

Seawater 100 ml (n=8)

Cation ex. resin 4 ml (BV)

Sr resin 2 ml (BV)

Recovery Sr 71 – 78 %

Relative error -3 ~ 5 %

Time 25 min

Flow rate 7 ml/min

Normal

Emergency

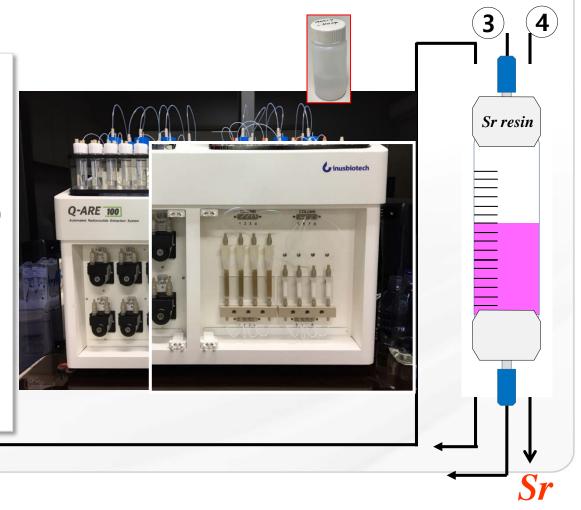
Result

Cation ex.

resin

Seawater 100 ml (n=8)

Cation ex. resin 4 ml (BV)


Sr resin 2 ml (BV)

Recovery Sr 71 – 78 %

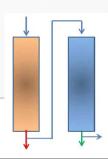
Relative error -3 ~ 5 %

Time 30 min

Flow rate 7 ml/min

Conclusion

- ◆ Analytical method for radiostrontium (⁹⁰Sr/⁸⁹Sr) in seawater
- ◆ Routine monitoring: *DGA resin* + *TRU resin*


For 10 L of seawater, we have 80 % of recovery (Y), 5 % of relative error, and finished the separation within 3 h (25 ml min⁻¹).

◆ Emergency preparedness: cation ex. resin + Sr resin

For 0.1 L of seawater, we have 73-78 % of recovery (Sr),

-3 to 5 % of relative error, and finished the whole separation within 30 m.

