Validation of radiochemical methods for the determination of difficult-to-measure nuclides using LSC

Nóra Vajda, Zsuzsa Molnár, Edit Bokori, Szabolcs Osváth*, Dénes Párkányi**, Mihály Braun***

RADANAL Ltd., Budapest, 1121 Hungary

National Research Directorate for Radiobiology and Radiohygiene (OSSKI), Budapest, 1221 Hungary Centre for Energy Research, Hungarian Academy of Science (MTA EK), Budapest, 1121 Hungary ISOTOPTECH Zrt., Debrecen, 4026 Hungary

LSC 2017, Copenhagen, May 1-5, 2017

Contents

DTM nuclides Method validation principles Examples for method validation: ⁹⁰Sr ⁹³Zr Major issues in validation of ⁶³Ni and ⁵⁹Ni

Difficult-to-measure (DTM) nuclides

Properties:

long half-life - long-term effect, small specific activity

low amounts/activities

α particles, electrons (β, Auger), X-rays – absorption, self-absorption

Nuclide	Half-life		Decay	β _{Max}	Specific	Occurance/		nce/	
			mode		activity	field of applicati		lication	
				keV	Bq/g				
⁹⁰ Sr	29,1	У	β-	546	5,04E+12	DN	WD	EM, MT	
⁹³ Zr	1,53	10 ⁶ y	β-	90	9,27E+07	DN	WD		
⁵⁹ Ni	76400	у	EC, β+	(X: 6,9)	2,94E+09		WD		
⁶³ Ni	100	У	β-	67	2,09E+12	DN	WD		
	DN=decommissioning of nuclear facilities								
				WD=waste depository					
				EM=environmental monitoring					

MT=medical tracer

β spectrometry by LSC

High detection efficiency (close to 100 %) No absorption/self-absorption

Quench effect – quench correction possibilities Poor energy resolution (around 10 %) **Continuous nature of β decay/spectra**

LSC measurement

Chemical separation procedure High selectivity - to remove interfering nuclides

by either or the combination of any the following techniques

- 1. calibration using reference standards or reference materials,
- 2. inter-laboratory comparisons, e.g. PT
- 3. systematic assessment of the factors influencing the result,
- 4. assessment (of the uncertainty of the results) based on scientific understanding of the theoretical principles of the method and practical experience,
- 5. comparison of results achieved with other methods

ISO/IEC 17025 (2005): General requirements for the competence of testing and calibration laboratories

⁹⁰Sr determination

Nuclide	Half-life		Decay	β_{Max}	Specific
			mode		activity
				keV	Bq/g
⁹⁰ Sr	29.1	у	β-	546	5,04E+12
90 y	64	h	β-	2280	2,01E+16

Standard validation techniques:

- 1. Use of CRM,
- 2. Participation in PTs
- 3. Systematic assessment of the factors influencing the result fish bone
- 4. Assessment based on scientific understanding

Validation issue

5. No good independent method for validation

⁹⁰Sr determination

⁹⁰Sr / ⁸⁹Sr determination

Analytes and possible interferences in radiostrontium analysis:

 90 Sr \longrightarrow 90 Y \longrightarrow 90 Zr (stable)

Nuclide	Half-life		Decay mode	$\boldsymbol{\beta}_{Max}$	Specific activity	
				keV	Bq/g	
⁸⁹ Sr	50.6	d	β-	1501		
⁹⁰ Sr	29.1	у	β-	546	5,04E+12	Environmont
⁹⁰ Y	64	h	β-	2280		Liiviioiment
⁹¹ Y	59	d	β-	1544		After accident
⁹¹ Sr	9,7	h	β-, γ	2700		
⁹² Sr	2,6	h	β-, γ	568		Fresh tuel

Radiostrontium determination using Sr crown ether in nuclear samples

- separation after
 - 2-5 days of cooling
- repeated counting after 2 weeks
- checking the shape of LS spectra
- calculations described in IAEA-AQ-27_web

Validation of the method for Radiostrontium determination

Conclusions

⁹⁰Sr results can be validated by measurement of reference materials, by participation in inter-laboratory comparisons.

It is important to assess all influencing factors, such as the presence of other Sr and Y isotopes, or other possible contamination (radionuclides of K, Ba, Pb) by performing ingrowth/decay measurements as part of method validation.

⁹³Zr determination

Nuclide	Half-life	Decay	β _{Max}	Specific	Occurance/
					field of
		mode		activity	application
			keV	Bq/g	
⁹³ Zr	1,5310 ⁶ y	β-	90	9,27E+07	DN WD

Validation issues:No 93Zr standardNo reference materialNo intercomparison exercise

Validation option:

comparison of independent methods: LSC ICP-MS

⁹³Zr determination

Carrier free tracers by NAA of U Purification on UTEVA γ spectrometry

Repeated separation on UTEVA to purify Zr

Yield: Zr: 60-90% Fluctuating significantly due to Zr adsorption to surfaces.

⁹³Zr determination

ICP-MS (Agilent Triplequad 8800)

Possible interferences in ICP-MS isobaric interference: **stable Nb** (⁹³Nb), ^{93m}Nb, ⁹³Mo abundance sensitivity: **stable Zr** (⁹²Zr, ⁹⁴Zr) polyatomic interferences, e.g. ⁹²Zr¹H

LSC (Perkin Elmer Tricarb 2800)

Possible interferences in LSC

⁹⁵Zr-⁹⁵Nb tracer

α emitting nuclides (²³⁷Np, ²³²Th, ²³⁰Th...) any contamination (^{110m}Ag... ^{93m}Nb)

Countermeasures

Nb decontamination DF>10³ mathematical correction mathematical correction

cooling, correction spectrometric separation chemical purification

Measurement of ⁹³Zr by ICP-MS

- Background correction
- Correction for measurement instability using internal standard (Rh)

$$I_{net} = (I_{measured} - I_{blank}) \cdot \frac{I_{Rh, ref}}{I_{Rh}}$$

• Correction for abundance sensitivity due to stable Zr (⁹²Zr, ⁹⁴Zr)

$$I_{net,cor.} = I_{net} - I_{net,Zr92+94} \cdot f_1$$
 $f_{(93/92+94)}: 4.4 \ 10-5 \ cps/cps$

• Calibration with stable Zr standard solution(⁹²Zr)

$$C_{Zr-93} = \frac{I_{net,cor}}{I_{net,cor,Zr-92std}} C_{Zr-92std}$$

sensitivity: 5.6 10⁴ cps/ppb nuclide

No correction for isobaric Nb interference

Measurement of ⁹³Zr by LSC

LSC spectra of H16-6 waste sample and the background

LS spectra can reveal radioactive contamination of Zr fraction!

Measurement of ⁹³Zr by ICP-MS and LSC

Sample	Zr-	93	Remark
code	LSC	ICPMS	
	Bq/L	Bq/L	
H16-10	51,1	20,0	
H16-1	77,9	53,3	
H16-9	57,8	71,0	
H16-8	47,8	108,8	
H16-5	49,6	118,0	
H16-2	76,1	137,4	
H16-4	44,9	327,0	Nb impurity
H16-6	924,8	1196,3	
H16-3	140,3	55,7	contamination

Measurement of ⁹³Zr by ICP-MS and LSC

Conclusions

ICP-MS is a sensitive technique to determine ⁹³Zr but small amounts of stable Nb can cause overestimation of the result.

LSC is exposed to the hazards of radioactive contamination. The presence of radioactive Zr tracer reduces the sensitivity.

LSC helps discover deviation from true value.

The method can be validated by the use of two methods.

⁶³Ni and ⁵⁹Ni determination

Nuclide	Half-	life	Decay	β_{Max}	Specific	0	ccura	ance/
							field	of
			mode		activity	a	pplica	ation
				keV	Bq/g			
⁵⁹ Ni	76400	у	EC, β+	(X: 6,9)	2,94E+09		WD	
⁶³ Ni	100	У	β-	67	2,09E+12	DN	WD	

Validation issues: No ⁵⁹Ni standard No reference material for ⁵⁹Ni determination No intercomparison exercise for ⁵⁹Ni determination Validation options:

- ⁶³Ni determination in CRM and in PT
- Comparison of independent methods: LSC for ⁶³Ni,

X spectrometry for ⁵⁹Ni ICP-MS for ⁶³Ni ???, ⁵⁹Ni???

⁶³Ni and ⁵⁹Ni determination

SAMPLE Carriers: 6 mg Fe, 6 mg Ni

Removal of Fe by extraction chromatography

Selective separation of Ni by extraction chromatography (from Co, Cu)

Ni purification by precipitation

Decomposition of DMG

⁶³Ni and ⁵⁹Ni determination

LSC for ⁶³Ni (Perkin Elmer Tricarb 2800)

Possible interferences

⁵⁹Ni

any contamination (^{110m}Ag...⁶⁰Co)

correction if necessary chemical purification

X-ray spectrometry for ⁵⁹Ni (Si(Li) and MCA)

Possible interferences: none

X-ray spectrum of a Ni source from H17-4 waste

ICP-MS (Agilent Triplequad 8800)

Possible interferences in ICP-MS isobaric interference of ⁶³Ni: **stable Cu** (⁶³Cu-⁶⁵Cu) isobaric interferenceof ⁵⁹Ni: **stable Co** (⁵⁹Co) abundance sensitivity: stable Ni (⁵⁸Ni, ⁶⁰Ni, ⁶²Ni) polyatomic interferences, e.g. ⁵⁸Ni¹H, ⁶²Ni¹H Calculation: similar to the case of ⁹³Zr

Countermeasures

mathematical correction chemical purification mathematical correction collision cell

Validation of ⁶³Ni results

Use of reference materials, participation in PTs Not waste matrix Measured **Reference value** Precision ⁶³Ni activity ⁶³Ni activity index unc unc concentration concentration Bq/kg Bq/kg Bq/kg Bq/kg % MAPEP-06-MaS15 357 50 329 56 22 The presence of a few ppb Cu causes **Measurement by ICP-MS** significant **ICP-MS** LSC overestimation! ppb Sample Net intensity Net intensity Cu Ni Ni-63 intensity Ni-63 Ni-63 Ni-63 Ni-63 code at mass 63 concentration concentration at mass 65 corrected concentration activity activity activity (Ni-63+Cu-65) (Cu-65) for Cu-63 concentratio oncentratio oncentratio in waste* in waste Bq/L waste Bq/L waste Bq/mL cps cps cps ppb ppb ppm H16-3/1 3.14E+07 1,48E+07 1054 LD LD LD 1,38E+05 11 H16-3/2 5,15E+07 2,43E+07 1328 LD LD LD 1,26E+05 9 H17-4 7.69E+05 3.64E+05 LD 107 28 LD 2,99E+05 LD 37 H17-6 1.92E+06 8.28E+05 76 8.55E+04 3,19E+03 6,42E+05 1,53E+00 2,87E+06 Cu-63/Cu-65 ratio: 2,22 * in ICP-MS sam Work in high purity 5,61E+04 cps/ppb nuclide Ni sensitivity: environment Ni-63 specific activity: 2,09E+03 Bq/ng

Validation of ⁵⁹Ni results

No reference material, no PT

Measurement by ICP-MS

	MP-AES measurement		XRF measurements				
Sample	Со	Net	Ni-59 intensity	Ni-59	Ni-59	Ni-59	Ni-59
code	concentration	intensity	corrected	concentration	activity	activity	activity
	by AES	at mass 59	for Co		concentration	concentration	concentration
	ppb	cps	cps	ppb=ng/mL	Bq/mL	Bq/L waste	Bq/L waste
H16-3/1	1,25E+02	5,10E+06	LD	LD	LD	LD	LD
H16-3/2	3,10E-01	9,16E+04	7,47E+04	1,33E+00	3,92E+00	2488	LD
H17-4	LD	7,77E+04	7,77E+04	1,39E+00	4,08E+00	4587	403
H17-6	LD	1,21E+05	1,21E+05	2,15E+00	6,33E+00	5694	1080

Co sensitivity: 5,44E+04 cps/ppb

Ni sensitivity (isotopic): 5,61E+04 cps

Ni-59 specific activity:

cps/ppb nuclide

2,94 Bq/ng

The presence of a 1-2 ppb Co causes

significant

overestimation!

Conclusions

⁶³Ni results obtained by LSC can be validated by the measurement of reference materials, participation in intercomparison exercises.

Techniques for validation of ⁵⁹Ni results obtained by X–ray spectrometry are not available.

MESSAGES

Conventional techniques of method validation are not always sufficient or available.

The accuracy of ⁹⁰Sr results can be confirmed by performing repeated measurements.

⁹³Zr results can be validated by comparing LSC and ICP-MS measurements.

Validation of ⁶³Ni and ⁵⁹Ni results by comparing LSC/X-ray spectrometry and ICP-MS measurements has failed due to the presence of a few ppb Cu or Co.