

Synthesis and characterisation of scintillating microspheres made of polystyrene/polycarbonate for ²²²Rn measurements

Pelay, E.; Tarancón, A.; <u>Mitev, K.</u>; Dutsov, Ch.; Georgiev, S.; Boshkova, T.; García, J.F.

Background

The absorption of ²²²Rn in polymer samples can be described by the diffusion equation taking into account the radioactive decay:

$$\frac{\partial n(x,y,z,t)}{\partial t} = D\left(\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2} + \frac{\partial^2 n}{\partial z^2}\right) - \lambda n$$

The solution for spherical specimen exposed to ambient concentration C_{env} for exposure time T_s and left to desorb in radon-free air is:

$$A_{d}(t) = 6\lambda KVC_{env} \left(L_{D}/R\right)^{2} \sum_{j=1}^{\infty} \frac{1 - e^{-\lambda_{j}T_{s}}}{\lambda_{j}} e^{-\lambda_{j}t}$$

with: $\lambda_{j} = \lambda \left(1 + \left(\frac{j\pi L_{D}}{R}\right)^{2}\right)$

 L_D and K are the physical parameters which describe the ²²²Rn absorption in the polymer. By definition:

$$L_D = \sqrt{\frac{D}{\lambda}} \qquad K = \frac{C_{PC,0+}}{C_{env}}$$

Contents lists available at ScienceDirect
Nuclear Instruments and Methods in
Physics Research A
ELSEVIER
journal homepage: www.elsevier.com/locate/nima

Nuclear Instruments and Methods in Physics Research A 598 (2009) 620-627

Sorption and desorption of radioactive noble gases in polycarbonates D. Pressyanov *, K. Mitev, S. Georgiev, I. Dimitrova

Experimental Determination of L_D and K

Radiation Protection Dosimetry (2011), Vol. 145, No. 2–3, pp. 123–126 Advance Access publication 5 April 2011 doi:10.1093/rpd/ncr069

DETERMINATION OF THE DIFFUSION COEFFICIENT AND SOLUBILITY OF RADON IN PLASTICS

D. Pressyanov*, S. Georgiev, I. Dimitrova, K. Mitev and T. Boshkova

²²²Rn, polymers and motivation

• POLYCARBONATE

High ²²²Rn absorption capabilities

Track-etch properties

	Diffusion	Partition	
Material	length, L_D	coefficient from	
	(µm)	air, K	
Makrofol [®] N	38.9 (13)	112 (12)	
Makrofol® DE	52.1 (10)	26.2 (25)	

¹The values are for 20 °C.

PLASTIC SCINTILLATION MICROSPHERES MADE OF POLYSTYRENE

High scintillating capabilities

Preliminary and successfully tested for ²²²Rn absorption and measurement

E TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016 1209		Diffusion	Partition
Pilot Study of the Application of Plastic Scintillation	Material	length, L_D	coefficient
Aicrospheres to Rn-222 Detection and Measurement Krasimir Mitev, <i>Member, IEEE</i> , Ivelina Dimitrova, Alex Tarancón, Dobromir Pressyanov, Ludmil Tsankov,		(µm)	from air, K
Tatiana Boshkova, Strahil Georgiev, Rositsa Sekalova, and Jose F. García	PSm from	120.8 (21)	6.62(51)
	porystyrene	¹ The v	values are for 21 °C

• Develop PSm made of Polystyrene, Polycarbonate and mixtures

for the ²²²Rn absorption and measurement.

- ✓ Synthesis of PSm of PS, PC and mixtures of PS and PC.
- Characterization (morphological and radiological) of the microspheres synthesised.
- ✓ Test the applicability of the PSm to measure 222 Rn.

- . Preparation of the Organic and Aqueous phase
- 2. Slow addition of phases using separation funnel
- 3. Stirring 20h at 25^oC
- 4. PSm filtered and cleaned with ethanol and water
- 5. Dried 12h at 40°C

Raw materials

<u>PS_SA</u> Polystyrene Across 260000 MW (average)

<u>PC_MAKD</u> Polycarbonate Makrofol D (Bayer)

PSm prepared

PSm	Polymer	Composition			
1	PS_SA	25 g of polystyrene Across			
2	PS_SA/PC_MAKD 75:25	18.75 g of Across polystyrene + 6.25 g of MAKD polycarbonate			
3	PS_SA/PC_MAKD 50:50	12.5g of Across polystyrene + 12.5 g of MAKD polycarbonate			
4	PS_SA/PC_MAKD 25:75	6,25 g of Across polystyrene +18.75 g of MAKD polycarbonate			
5	PC_MAKD	25 g of MAKD polycarbonate			

PSm appearance

- 75g of PSm were prepared (3*25g).
- In all cases particles were obtained and efficiency was close to 100%.

Fine dust

PS_SA, PC_MAKD, PS/PC 50:50

Blocks

PS/PC 75:25

Agglomerates

PS/PC 25:75

PSm_SA (polystyrene)

- Median size 85µm
- Smooth
- Spherical without deformities

PSm_MAKD (polycarbonate)

- Median size 65µm
- Smooth with Superficial holes
- Non-Spherical

✓ The PC PSm non-spherical form may be caused by the different formation of microdroplets and the process of solidification due to polarity of PC

PS/PC (75/25)

- Agglomerations
- Median size 65µm
- Plains formed in collisions

PS/PC (50/50)

- Median size 55 μm
- Non-spherical
- Line in the half

PS/PC (25/75)

- Very big agglomerations
- Median size 100 μm
- Big holes
- ✓ PC and PS are not miscible and form two phases into the microdroplet before precipitate.
 This behaviour and its proportion defines the final shape

IR analysis

- PS_SA (polystyrene)
- PSm_PS (microspheres of PS)

- ✓ Same peaks (PS is not modified)
- ✓ Encapsulation of solutes
- ✓ Some water and/or PVA?

PSm morphology (IR analysis)

PSm morphology (IR analysis)

- PSm_PS_PC_75/25
- PSm_PS_PC_50/50
- PSm_PS_PC_25/75

- ✓ Same peaks (PC and PS are not modified)
- ✓ Encapsulation of solutes
- ✓ Some PVA or water?

Quantulus detector

Spectrum position and Quenching

✓ Quenching increases with the increase of the amount of PC (chemical quenching)

Detection efficiency for high-energy beta and alpha emitters

	PS_PC (100/0)	PS_PC (75/25)	PS_PC (50/50)	PS_PC (25/75)	PS_PC (0/100)
Blank [cpm]	0.94(0.10)	0.75(0.08)	0.87(0.21)	0.87(0.27)	0.83(0.11)
SQP [E]	806(3)	799(4)	765(4)	745(5)	712(3)
Eff. ³ H [%]	0.9(0.1)	0.30(0.03)	0.66(0.03)	0.47(0.03)	0.53(0.02)
Eff. ³⁶ Cl [%]	97(1)	84(3)	96(1)	91(2)	93(1)
Eff. ²⁴¹ Am [%]	75(1)	53(4)	85(2)	74(1)	77(1)

 \checkmark Detection efficiency for tritium is low

- ✓ Values are high in all cases except for 75/25 (agglomerations of PSm)
- ✓ Detection efficiency is mainly dependent of the PSm diameter.

Radiometric Capabilities

<u>Spectra of ²²²Rn absorbed in PSm</u> (in equilibrium with its progeny)

PSm

Counting geometry optimized for better light collection as suggested by Philippe Cassette

Glass tube 5mm diameter

✓ Spectrum of PSm made of 100% polystyrene (PS) very similar to that of the LS cocktail

✓ Quenching increases with the increase of the polycarbonate content

²²²Rn absorption properties

Partition coefficients and diffusion lengths

			Compare to					
PSm		K	k of the raw material:	PS	PSm		$L_D, \mu m$ Compare to L_D :	
100% PS 0	0% PC	5.8 (15) <	6.62(51)	100% PS	0% PC	97.0 (23) <	120.8(31)	
75% PS 2	5% PC	6.6 (17)		75% PS	25% PC	69.4 (18)		
50% PS 5	0% PC	6.8 (17)		50% PS	50% PC	49 (14)		
25% PS 7	5% PC	5.5 (14)		25% PS	75% PC	1125 (45)	Residual PVA?	
0% PS 10	0% PC	5.2 (13)	26.2(25)	0% PS 1	.00% PC	112.9 (46)	52.1(10)	
							Error introduced by non-spherical PSm?	

✓ The production of PSm of polycarbobnate changed the radon absorption properties

 \checkmark The change is more pronounced for the partition coefficient K and less pronounced for L_D

- PSm of PS, PC and mixtures of PS/PC can been prepared by the evaporation/extraction method
- Different polarity of PS and PC cause formation of PSm of different shape: spherical for PS and pseudo-spherical for PC.
- $\checkmark\,$ PC and PS are not miscible and in PSm of both are segregated.
- ✓ Efficiency of PSm of PC is slightly lower due to quenching effect caused by PC.
- ✓ The ²²²Rn absorption properties of PSm made from 100% polycarbonate differ from the ²²²Rn absorption properties of the polycarbonate material.

This work is supported by the Bulgarian National Science Fund under Contract DFNI T02/13 "POLYRAD"

Thank you for your attention.