

AN INFLUENCE OF THE TDCR SYSTEM SETTINGS ON THE RADIONUCLIDES STANDARDIZATION

T. Ziemek, A. Jęczmieniowski, R. Broda, E. Lech, A. Listkowska National Centre for Nuclear Research Radioisotope Centre POLATOM, Poland

LSC2017 Advances in Liquid Scintillation Spectrometry, Copenhagen, 1-5 May, 2017

Distressing fact

Activity values of the same source determined using two various LS-counters in our laboratory, TDCR and TDCRG, were permanent different (³H of about 0.7 %, ¹⁴C of about 0.5 %).

Both triple counters were set in compliance with generally accepted principles (anode HV in the midst of plateau, discrimination threshold below 1-electron pulse).

The same counting code was used (Poisson statistics, Birks function with the same *kB* parameter value).

Questions

- What should be principles of the correct settings of the triple counter?
- Comparison of the same source (³H or¹⁴C) measurement results in the TDCR and TDCRG counter
- Influence of the discrimination threshold setting
- Influence of the anode HV setting
- Influence of various methods of the detection efficiency modification (PM-tubes defocusing, optical filters)

TDCR system

Triple-to-Double Coincidence Ratio counter

Coincidence unit	MAC3 with 3 amplitude discriminators
3 PMTs	Burle 8850
Anode HV	2750 V (midst of plateau)
1 st dynode HV	660 V
PMTs defocusing	660 V – 390 V
Discrimination threshold	~1V

TDCRG system

 4π (LS)- γ coincidence counter with the TDCR detector in β -channel and NaI(TI) detector in γ -channel

Coincidence unit	BAD-1 (FPGA) with CAEN N842 constant fraction discriminator	
3 PMTs	ET Enterprises 9214B	
γ-channel	Nal(TI) 3"×3" detector	NaI(II)
Anode HV	2000 V (midst of plateau)	
1 st dynode HV	300 V	
PMTs defocusing	290 V – 15 V	Preampli- fier analyzer
Discrimination threshold	~ 50 mV	

Constant

Fraction

Fast

Amplifier

³H measurements

- One ³H control source measured in both systems
- Ultima Gold scintillator
- Glass vial
- Detection efficiency was changed by PMTs defocusing
- Time of ³H source measurement in each counter: 6h

Results of calculation $\Delta = (A - \overline{A}_{TDCR}) / \overline{A}_{TDCR}$ for selected kB = 0.010 cm MeV⁻¹ Uncertainties: $\sigma (k = 2)$

- One ¹⁴C control source measured in both systems
- Ultima Gold scintillator
- Glass vial
- Detection efficiency was changed by PMTs defocusing
- Time of ¹⁴C source measurement in each counter: 6h

Results of calculation $\Delta = (A - \overline{A}_{TDCR}) / \overline{A}_{TDCR}$ for selected kB = 0.010 cm MeV⁻¹ Uncertainties: $\sigma (k = 2)$ ЗH

- One source in glass vial
- Both detectors were used with a common electronics system

Detection

 efficiency was
 changed by PMTs
 defocusing

TDCR system characteristics

TDCRG system characteristics

³H and ¹⁴C repeated measurements

- The same sources measured in both systems during 6h; $\Delta = (A \overline{A}_{TDCR}) / \overline{A}_{TDCR}$
- Ultima Gold scintillator; frosted vials
- PMTs defocusing
- Increased anode HV in the TDCRG system from 2000 V to 2200 V
- Optical filters in the TDCRG system, 2200 V

³H spectra from 9th dynode

- The above spectra illustrate somehow our measurement problems
- PMTs were not designed for defocusing!

- A criterion of the working point selection in the triple LS-counter should be full saturation of the T and D coincidence HV characteristics.
- The source activity determined when counting efficiency is changed using defocusing of the photomultipliers can be not correct.

In case of **ET Enterprises 9214B** PMTs defocusing, the activity determined is not correct.

- The source activity determined when counting efficiency is changed using optical filters is correct.
- In optimal working conditions of Burle 8850 and ET Enterprises 9214B photomultipliers variation of the discrimination threshold below 1-electron pulse has no influence on the determined source activity.

Thank you for attention!