

Rapid analysis of ⁹⁰Sr and ⁹⁹Tc in low active effluent using extraction disks: the advantages of liquid scintillation counting

LSC 2017, Copenhagen

<u>Braekers D.</u>, Doumont C., Di Pasquale S., Deconninck B. Institute for radioelements - IRE ELIT

Excellence dedicated to nuclear medicine, healthcare and environment

Table of content

- Introduction of the Business Unit Services and the radioactivity measurement laboratory of IRE ELiT
- Rapid extraction disks for the ⁹⁰Sr and ⁹⁹Tc analysis of low radioactive effluents
 - 1. Identification of potential interfering isotopes by LSC
 - 2. Determination of the chemical yield by using an internal tracer
- Conclusions

Business Unit Services

Excellence dedicated to nuclear medicine, healthcare and environment

We contribute to protecting the environment

- Radioactivity analysis and development of radiological monitoring systems
- Radiological characterization of waste and facilities
- Consulting and technical services in the radiation and nuclear sectors
- Dismantling of radioactive sealed sources

Summary

- Resource: 7 employees
- Number of samples collected: ~ 2500 per year
- Number of analysis: ~ 7000 per year
- 20 analysis procedures under ISO 17025 accreditation
- Activity fields:

Radiological monitoring survey Analysis of water samples

Monitoring of workers

Food chain survey

Support to the industries

ISO 17025 Accredited laboratory 444-TEST

Rapid extraction disks for the ⁹⁰Sr and ⁹⁹Tc analysis

Excellence dedicated to nuclear medicine, healthcare and environment

Extraction disks

- PTFE membrane coated by a chelating agent
- Selective for strontium, radium or technetium element
- For waters or effluents sample
- Measurement by Liquid scintillation counting or proportional counting

• References:

 ⁹⁹Tc : ASTM D7168-16 Standard Test Method for ⁹⁹Tc in Water by Solid Phase Extraction Disk
⁹⁰Sr : 3M Empore Test method SR-95

Analysis methodologies in routine

⁹⁰ Sr	⁹⁹ Tc		
V = 500 ml	V = 250 ml		
HNO ₃ (2N)	HCI (1N)		
Filtration using 0.45 µm membrane			
Internal ⁸⁵ Sr tracer	Standard addition method		
Up to 6 samples in parallel	Up to 5 samples in parallel		
Sample extraction following by water			
Elution with EDTA solution	Dried on a metallic planchet		
Liquid scintillation counting after ingrowth	Direct proportional gas counting		

⁹⁹Tc: Potential interfering isotopes by LSC

Known radioactive interferences

- > ¹⁰³Rh and ¹⁰⁶Rh \rightarrow gamma measurement
- \geq ²⁴¹Pu-241 \rightarrow low beta energy no impact with proportional counting
- NPL 2012 PT exercise (⁹⁹Tc, ³H and ³⁶Cl in NaOH)
 - Reference value for ⁹⁹Tc : 0.143 Bq/g
 - > Reported activity : 0.79 Bq/g $\rightarrow \zeta$ score = 7.58!
 - Sample not acidified before analysis

	Without HCl	With HCl
Background (cpm)	0.7	0.6
Sample Count rate (CPM)	12.91	2.92
Global efficiency (%)	22.6	22.8
⁹⁹ Tc activity (Bq/g)	0.793 ± 0.056	0.150 ± 0.016
ζscore	7.58	0.83

³⁶Cl interference detected by LSC

LSC spectrum of the NPL 2012 Tc rad disk with 20 ml optiphase Hisafe III

→ Co-extraction of the two isotopes
→ Impact of ³⁶Cl reduced by the addition of hydrochloric acid (cold chloride)

Chemical yield issue for complex matrix

- Sr-90 analysis on routine effluent samples
- By counting the Sr-90 and Y-90 at equilibrium with a proportional counter

 \rightarrow Strong influence of K, Na, Ca, NH₄ cations

⁸⁵Sr tracer for chemical yield determination

LSC spectra on TriCarb 3180 BGO system of ⁸⁵Sr and ⁹⁰Sr/⁹⁰Y EDTA solution

But optimization of the counting windows needed!

Optimization of counting windows

- F1 : From channel 2 to 8 \rightarrow Eff_{F1} = 28% \rightarrow FoM ~ 285
- F2 : From channel 290 to 960 \rightarrow Eff_{F2} = 57% \rightarrow FoM ~ 1530

Conclusions

Solid phase extraction Disks from Empore[™] are an efficient alternative to conventional radiochemical sample preparation methods.

However it requires to be used with caution regarding the potential interferences that can impact the recovery factor or directly the truthiness of the measurement.

Thanks to the liquid scintillation, the unexpected interference of ³⁶Cl in the 99Tc analysis has been discovered.

In addition, the liquid scintillation allow the use of the ⁸⁵Sr as an internal tracer to monitor the chemical yield in the routine analysis of effluent samples.

Excellence dedicated to nuclear medicine, healthcare and environment

Thank you for your attention

Please visit our poster (session 2, n°222)