

Bilateral comparison of ¹⁴C activity measurements at the NCBJ RC POLATOM and the ENEA-INMRI

T. Ziemek¹, M. Capogni², R. Broda¹, P. De Felice², T. Dziel¹, A. Listkowska¹

¹ National Centre for Nuclear Research RC POLATOM, Poland ² ENEA National Institute of Ionizing Radiation Metrology, Italy

LSC2017 Advances in Liquid Scintillation Spectrometry, Copenhagen, 1-5 May, 2017

Outlines

- The aim of the comparison
- ¹⁴C solution and LS-sources
- Measurements methods
- LS counters used at POLATOM and ENEA
- ¹⁴C activity calculation
- Results of the comparison and uncertainty budget
- Performances of the two Laboratories
- Conclusions

The aim of the comparison

- To evaluate the performance of both Institutes for measurements of a medium-energy long-lived pure β-emitter ¹⁴C
- To check the performances of the Triple-to-Double Coincidence Ratio (TDCR) counters available both at POLATOM and ENEA
- To compare results of on-line (in the FPGA digital board) and off-line (in the CAEN Desktop digitizer) analyses in the two TDCR systems
 ¹⁴C standards are of particular importance in many applications:
 - in metrology for self-normalizing and calibration of LS counters
 - in radiometric dating
 - in assessing the impact of ¹⁴C releases in the environment and setting-up and implementing technical and organizational procedures for ensuring public health
 - in measurements in coolant circuit of BWR and PWR reactor
 - in enabling accurate and precise measurements in plant and other facility at which fission reactions or spent fuel processing take place

¹⁴C solution and LS-sources

The ¹⁴C solution used:

Chemical composition	Solubilization medium	Carrier conc. ∕(µg g ⁻¹)	Density (g cm ⁻³)	Impurities
CH ₃ COONa	H ₂ O	CH₃COONa: 60	1.0	_

• A set of six ¹⁴C sources was prepared at POLATOM:

- 20 mL high-performance PerkinElmer glass vials
- 10 mL of Ultima Gold liquid scintillator
- mass of radioactive material from 135.7 mg to 138.6 mg
- The Mettler MT5 balance traceable to SI system of units through the national standard of mass in Poland was used
- All six sources were measured at POLATOM and three of them, ready-to-measure, have been sent and measured at ENEA-INMRI

Measurement methods

POLATOM:

TDCR method (4P-LS-BP-00-00-TD)

- used in two LS-counters
- counting efficiency was changed by photomultipliers defocusing
- each source was measured during 30 min

CIEMAT/NIST efficiency tracing method (4P-LS-BP-00-00-CN)

- used in two scintillation counters
- ³H as a tracer
- each source was measured during 15 min

ENEA-INMRI:

TDCR method (4P-LS-BP-00-00-TD)

- used in two LS-counters
- each source was measured during 20 min

Counters used at the RC POLATOM

TDCR counter:

3 PM-tubes RCA 8850, MAC-3 module

TDCRG counter

(TDCR detector with γ -channel): 3 PM-tubes ET Enterprises 9214B, NaI(TI) 3"×3" detector in γ -channel, FPGA XILINX Spartan-3AN digital board

Ziemek, T., Jeczmieniowski, A., Cacko, D., Broda, R., Lech, E., **2016**. *A new* $4\pi(LS)$ - γ coincidence counter at NCBJ RC POLATOM with TDCR detector in the beta channel. Appl. Radiat. Isot. **109**, 290-295

Counters used at the RC POLATOM

Tri-Carb 2810 TR scintillation counter

Wallac 1411

scintillation counter

Counters used at the ENEA-INMRI

Hidex 300SL 'Metro' version LS-counter

ENEA portable TDCR counter:

3 PM-tubes Hamamatsu R7600U-200, CAEN Desktop digitizer DT5720

Capogni, M., De Felice, P., **2014**. *A prototype of a portable TDCR system at ENEA*. Appl. Radiat. Isot. **93**, 45-51

¹⁴C activity calculation

POLATOM:

- **TDCRB-03** software for the TDCR method with $kB = (0.010 \pm 0.001)$ cm MeV⁻¹
- **CN2005** software for the CIEMAT/NIST method with $kB = (0.010 \pm 0.001)$ cm MeV⁻¹

ENEA-INMRI:

- **TDCRB-07** software for the TDCR method (from CEA-LNHB) with $kB = (0.011 \pm 0.001)$ cm MeV⁻¹

The *kB* parameter value was selected with regard to the source activity independence of the detection efficiency in the triple counter.

Data adopted by both laboratories (BIPM Monographie 5, 2013): $E_{\beta \max} = 156.476$ (4) keV $T_{1/2} = 5700$ (30) y

Results of the ¹⁴C bilateral comparison

Arithmetical mean values of all counting points of all sources measured in various LS-counters in both laboratories.

Combined standard uncertainties for k = 1.

Uncertainties for the ¹⁴C measurements

	Assess-	TDCR method				C/N method	
Uncertainty component	ment type	POLATOM		ENEA-INMRI		POLATOM	
, , , , , , , , , , , , , , , , , , ,		TDCR counter	TDCRG counter	Hidex system	portable TDCR	Wallac 1411	Tri-Carb 2910 TR
Counting statistics	А	0.04	0.13	0.25	0.28	0.27	0.02
Weighing	В	0.1	0.1	0.10	0.10	0.1	0.1
Background	А	0.01	0.03	0.01	0.05	0.01	0.01
Counting time	В	0.001	0.001	0.01	0.01	0.001	0.001
Discriminator threshold setting	В	0.15	0.15				
Dead-time	В			0.10	0.15		
Coincidence resolving time	В			0.15	0.20		
Theoretical model (kB selection, Birks function, energy spectrum)	В			0.20	0.20		
function	R					0.1	0.1
Tracer	B					0.096	0.082
kB selection	B	0.15	0.15			0.02	0.02
Counting model *)	В	0.25	0.25			0.25	0.25
Combined uncertainty	А	0.04	0.13	0.25	0.28	0.27	0.02
(as quadratic sum of all	В	0.34	0.34	0.29	0.34	0.30	0.29
uncertainty components)	total	0.34	0.37	0.38	0.44	0.40	0.30

^{*)} Comprises an influences of the stopping power dE/dX model selection, the β -spectrum calculation, the integration method for the Birks function and for the counting efficiency

Results of the ¹⁴C bilateral comparison

Laboratory / Method /	Measurement results		Final results	
Counter	A _i	U _i	$\overline{A_{i}}$	U _i
	(kBq g ⁻¹)	(%)	$(kBq g^{-1})$	(%)
POLATOM (TDCR)				
TDCR counter	49.98 ± 0.17	0.34	10 94 ± 0 12	0.25
TDCRG counter	49.70 ± 0.18	0.37	49.04 I 0.15	
POLATOM (CIEMAT/NIST)				
Wallac 1411	49.85 ± 0.20	0.40		
Tri-Carb 2910 TR	49.65 ± 0.15	0.30		
ENEA-INMRI (TDCR)				
Hidex 300SL	49.94 ± 0.19	0.38		0.20
ENEA portable TDCR	49.76 ± 0.22	0.44	43.03 I U.14	0.23

- A_i activity concentration u_i standard uncertainty (k = 1)
- \overline{A}_{i} one result per laboratory as the outcome of the ¹⁴C comparison (the mean arithmetical of the TDCR method measurement results)

Laboratories performances

The quantity E_n (European Standard EN ISO/IEC 17043:2010):

$$E_n(k=2) = \frac{(x_i - x_j)}{\sqrt{(2u_i)^2 + (2u_j)^2}}$$

where x_i, u_i – the ¹⁴C activity concentration and its standard uncertainty (k = 1) obtained at ENEA-INMRI x_i, u_j – values obtained at POLATOM

For any pair of results $0.08 < |E_n| < 0.59$ so $|E_n| < 1$ and this confirms that all results obtained by both laboratories are in good agreement.

The degree of equivalence of the participated laboratories (employing the convention used in CCRI(II)):

 $D_{ij} = x_i \cdot x_j \quad \text{with} \quad U_{ij} = 2\sqrt{(u_i)^2 + (u_j)^2}$ where x_i, x_j - the founded activities \overline{A}_i (one per laboratory) $D_{ij} = -0.08 \text{ kBq g}^{-1} \qquad U_{ij} = 0.38 \text{ kBq g}^{-1} \quad (k = 2)$

Conclusions

- All results of ¹⁴C measurements carried out at POLATOM and at ENEA-INMRI using the TDCR and CIEMAT/NIST method in six various counters are in a very good agreement
- Arithmetical mean of the TDCR method results were taken as final results of comparison measurements by both laboratories. The E_n parameter of the two final results is $|E_n| = 0.03$

Thank you for attention !