

LSC 2017

Advances in Liquid Scintillation Spectrometry

Standardization of Na-22 by CNET method

LIU Haoran¹, LIANG Juncheng¹ and YUAN Daqing²

National Institute of Metrology ,China
 China Institute of Atomic Energy, China

Outline

Preparation of LS Samples

• Sodium -22

- ✤ ²²Na master solution: Activity concentration of about 11.6 MBq/g
- ✤ Carrier: about 25µg/g NaCl in HCl (0.1 mol/L)
- ✤ Quenching agent: Nitromethane (CH₃NO₂)
- ✤ Scintillator: Ultima Gold LLT

• Tritium (tracer)

✤ A set of ³H samples were prepared in the same way

Impurity check of ²²Na solution

Outline

1	Sample preparation	
2	Process of standardization	
3	Results	
4	Disscusion 1: Influence of tSIE	
5	Disscusion 2: Influence of kB values	
6	Conclusions	

The procedure of the CIEMAT/NIST Method

2.1 Measurement details

LS spectrometers: PerkinElmer Tri-Carb 3100TR

- Quench indicating parameter : tSIE
- 5 cycles of 20 minutes per source
- At least 10⁶ counts for each source

Decay scheme of Na-22

Decay data of Na-22

Nuclear data of Na-22 (Cited from DDEP)

2 Nuclear Data

 $T_{1/2}(^{22}{\rm Na}\,)$: 2,6029 (8) a $Q^+(^{22}{\rm Na}\,)$: 2843,02 (21) keV

2.1 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	lg ft	P_K	P_L	
$\epsilon_{0,1} \\ \epsilon_{0,0}$	1568,44 (21) 2843,02 (21)	9,64 (9) 0,00098 (25)	Allowed Unique 2nd Forbidden	7,41 14,91	0,923 (4)	0,077 (4)	

2.2 β^+ Transitions

	Energy keV	Probability × 100	Nature	lg ft
$egin{smallmatrix} eta_{0,1}^+ \ eta_{0,0}^+ \end{split}$	546,44 (21)	90,30 (9)	Allowed	7,4
	1821,02 (21)	0,055 (14)	Unique 2nd Forbidden	14,9

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$(10^{-6})^{\alpha_K}$	$(10^{-6})^{\alpha_T}$	$^{\alpha_{\pi}}_{(10^{-5})}$
$\gamma_{1,0}(\text{Ne})$	1274,577 (7)	99,94 (13)	E2	6,36 (9)	6,71 (9)	2,34 (3)

Decay data of Na-22

Atomic data of Na-22 for efficiency calculation using the KLM rearrangement model

Name of parameter	Symbol	Value	Reference
Eluorasconco viold	$\omega_{\rm K}$	0.0152	Rambunak 1072
Fuorescence yield	$\omega_{ m L}$	0.0001	Dambynek-1972
Deletive methodilities of the K Augen	P _{KLL}	1	
electrons (sum-1)	P _{KLM}	0	F Schönfeld and H Janß
ciccuons (sum=1)	P _{KMM}	0	en-1006
Relative probabilities of the L Auger electrons (sum=1)	P _{LMM}	0	CIF1990
Relative probabilities of the K X-rays	P _{KL}	1	Eirostopo (1008)
(sum=1)	P _{KM}	0	Filestolle (1998)
Relative probabilities of the L X-rays (sum=1)	P _{LM}	0	Firestone (1998)
	E _{KLL}	0.8268	
Average energies of the Auger	E _{KLM}	0.8484	Larkins (1977)
electrons	E _{KMM}	0.8701	
	ELMM	0.0216	Larkins (1977)
	E _{KL}	0.8486	Eirostopo (1008)
Average energies of the X-rays	E _{KM}	0.8701	1 ¹ 10510110 (1990)
	E _{LM}	0.0216	Firestone (1998)

Code and parameters

³H

- Decay type : Pure Bata deacy
- Code: CN2003

²²Na

- Decay type : β⁺/EC decay
- Code: CN2003
- Electron-capture transition atomic rearrangement model: KLM
- Computation of ionization quenching function

(1) The ionization quenching parameter: KB=0.075

(2) The stopping power values(default)

(3) Scintillator composition, density (modify to Ultima Gold LLT)

The procedure to obtain the counting efficiency for Na-22

(a) The theoretical counting efficiency curve of ³H

(b) Experimental quench-correction curve of ³H

(c) "Universal" curve

(d) The theoretical counting efficiency curve of ²²Na

(e) Computed quench correction curve of ²²Na

Outline

1	Sample preparation	
2	Process of standardization	
3	Results	
4	Disscusion 1: Influence of tSIE and kB	
5	Disscusion 2: Influence of kB values	
6	Conclusions	

3.1 The stability of the counter

a. The stability of tSIE in the measurement

a. The stability of tSIE in the measurement

b. The stability of counting rates in the measurement

3.2 Results and uncertainty

The activity concentration of ²²Na

Sample No.	tSIE	Efficiency	Counting rate(min ⁻¹)	Mass(mg)	A(kBq.g ⁻¹)
Blank	491.8		258		
N1	518.5	0.9106	550407	31.96	315.07
N2	507.5	0.9105	601448	36.42	302.17
N3	465.4	0.9102	386208	23.82	296.68
N4	447.6	0.9101	360278	22.23	296.58
N5	424.4	0.9099	509733	31.46	296.62
N6	396.5	0.9097	373332	23.04	296.66
N7	369.2	0.9095	341983	21.12	296.51

Relatively standard deviation of N₃ to N₇

0.02%

3.2 Results and uncertainty

Uncertainty co	Uncertainty components*, in % of the activity concentration, due to:					
Factor	U(a)/a in%	Remarks				
Counting statistics	0.05	Standard deviation of mean of 5 samples, including the source dispersion.				
Weighing	0.09					
Background	0.03					
Dead time	0.10					
Quenching	0.04					
Tracer(H-3)	<0.01					
Input parameters and statistical model	0.19	Standard deviation of efficiencies with changes of input parameters				
Ionization quenching and kB model	0.03	Calculated from the maximum entropy principle, considering the changes of kB values from 0.006 to 0.014 cm·MeV ⁻¹				
Combined uncertainty	0.23	quadratic sum of all uncertainty components)				

Outline

> The problem of quench indicating parameter tSIE

(1) The tSIE seems to be affected by the γ rays from Na-22 source.

Sample No.	tSIE	CH ₃ NO ₂ (μl)	Efficiency
Blank	491.8 🧲	0	
N1	518.5	0	0.9106
N2	507.5 🧲	20	0.9105
N3	465.4	50	0.9102
N4	447.6	70	0.9101
N5	424.4	100	0.9099
N6	396.5	150	0.9097
N7	369.2	200	0.9095

- The influence of quench(tSIE) for Na-22 effciencies
 - \Box The contribution of γ -rays to overall effciency was taken into account in efficiency calculation.
 - \Box But the deviation of tSIE due to γ -rays was not considerded.

The influence of tSIE for Na-22 effciencies

The tSIE was varied over a range from 321-494, which corresponds to ²²Na efficiencies from 90.95% to 91.06%.

> The influence of tSIE for EC-γ nuclides

for example: Mn-54

The tSIE was varied over a range from 321-494, which corresponds to ²²Na efficiencies from 30.0% to 42.2%.

The problem of tSIE

(2) The tSIE of N_1 and N_2 are over the upper bound of quench correction curve

Outline

1	Preparation of LS Samples	
2	Process of standardization	
3	Results	
4	Disscusion: Influence of QIP tSIE	
5	Disscusion: Influence of kB values	
6	Conclusions	

The influence of kB values for CIEMAT/NIST method

- In some of the early CIEMAT/NIST method literatures, different values of Birks' parameter, kB, have been reported by various authors.
- But it doesn't matter for pure β-emitters, because the efficiencies were calculated twice in the procedure and enabled us to establish a link between the counting efficiencies of the two radionuclides (tracer and nuclide under study).
- Owing to cross-correlations, relative calculations are more likely to exhibit less uncertainty than absolute estimations due to the cancelation effects.

For CIEMAT/NIST method, although sometimes the kB value used in the calculation may be not the optimal one, but it has little effect on the result for pure β-emitters.

However, for EC decay nuclides:

The effect of kB can be neglected

The effect of kB is obvious

The influence of kB values for ²²Na effciencies

There is a very small difference of using different kB values, within 0.03% in the whole interval..

Outline

1	Preparation of LS Samples	
2	Process of standardization	
3	Results	
4	Disscusion: Influence of tSIE	
5	Disscusion: Influence of kB values	
6	Conclusions	

Conclusions

Influence of tSIE

- If tSIE values are in the interval of quench correction curve, the influence of tSIE to ²²Na can be neglected.
- (2) If tSIE values are out of range of quench correction curve, the data could not be used.

Influence of kB values

 The kB values are of only minor importance for ²²Na effciency calculation.

Thank you for your attention!

