Development of Continuous Inflow Tritium in Water Measurement Technology by using Electrolysis and Plastic Scintillator

4, May, 2017 Jun Woo Bae, Ukjae Lee, Hee Reyoung Kim

- Introduction
- Material & Methods
- Results & Discussion
- Conclusion
- References

Introduction

Fig. 1. A person concerning of Wolseong NPP which is PHWR type and operated since 1983 in Gyeongju, Republic of Korea.

- 4 Pressurized Heavy Water Reactors (PHWR) in Gyeongju have been operated where the oldest one started its operation in April, 1983.
- People living around the nuclear power plants has worried about the safety of drinking water.

Introduction

- ³H analysis using liquid scintillation counter (LSC) requires multiple steps of pre-treatment.
- The pre-treatment for trapping ³H requires much time (more than 5 hours for pre-treatment of 6 samples) and radioactivity analysis by LSC produces organic waste.

Introduction

- ³H radioactivity monitoring using ionization chamber has demerit that it has fluctuation for radioactivity level and it is hard to discriminate which types of particles are entered.
- Tritium in water monitor has high MDA (about 370 kBq/L in 2 hours) and not provides continuous sampling which is not applicable for continuous monitoring purpose.
- To overcome these, continuous tritium monitoring system in water based on plastic scintillation and electrolysis method was suggested.

The Concept of Tritium Continuous Monitoring System

Fig. 3. Conceptual diagram of system for tritium continuous monitoring system using electrolysis and plastic scintillator detector.

Electrolysis and Tritium Enrichment

- Electrolysis has been used to enrich the tritium concentration but iridium/platinum (Ir/Pt) polymer electrolyte membrane (PEM) electrolyzer has low enrichment factor and could generate the gaseous tritium [2].
- Fractionation factor (β) was adopted to estimate the enrichment factor of electrolyzer and ability to generate the gaseous tritium.

$$E = \frac{T}{T_0} = \left(\frac{V_0}{V}\right)^{1-\frac{1}{\beta}}, \beta = \frac{\ln\left(\frac{V_0}{V}\right)}{\ln\left(\frac{V_0T_0}{VT}\right)}$$

- E: Enrichment factor
- T, T₀: Tritium concentration in Bq/L after and before electrolysis
- V, V_0 : Volume of the tritiated water sample in L after and before electrolysis

The Detector Design

Fig. 4. Picture of the detecor part

- Plastic scintillator has merits for beta-ray measurement because of low probability of backscattering and stability [3].
- Two 50 × 50 × 1 mm³ planar plastic scintillator were attached to the metal chamber.

The Continuous Sampler and Electrolyzer

Fig. 5. Picture of the electrolyzer and continuous sampler system

- The electrolyzer included PEM electrolysis cell, water trap and flow meter.
- The system was operated with 12 V 80 AH lead storage battery.

Continuous Measurement Experiment

- The tritium sample (liquid) with activity concentration of 250 kBq/L was used.
- The tritium concertation in the gaseous sample can be calculated by:

$$T_{gas} = T_{liquid} \times \frac{1}{\kappa} \times \frac{1}{\beta}$$

- ✓ T_{gas}, T_{liquid}: Tritium concentration for gaseous and liquid sample [Bq/L]
- \checkmark κ : Hydrogen volume correction factor
- ✓ β: Fractionation factor
- Estimated tritium concentration of gaseous sample was 58.35 Bq/L.
- Measurement was carried out every 5 minutes for 15 times.

Minimum Detectable Activity Estimation

The minimum detectable activity (MDA) for gaseous sample in Bq/L was calculated by:

$$MDA_{gas} = \frac{2.71 + 4.65\sqrt{B_{cps} \times T}}{T \times V \times \varepsilon}$$

- B_{cps}: Background count rate [cps] T: Measurement time
- ✓ V: Volume of the detector chamber [L]
- \checkmark ϵ : Detection efficiency
- The MDA for liquid sample in kBq/L was calculated by:

$$MDA_{liquid} = \frac{2.71 + 4.65\sqrt{B_{cps} \times T}}{T \times V \times \varepsilon} \times \kappa \times \beta \times \frac{1}{1000}$$

$$\checkmark \text{ κ: Hydrogen volume correction factor (1234.7)$}$$

$$\checkmark \beta: \text{ Fractionation factor (3.47)}$$

\succ Fractionation Factor (β) for the PEM Cell

• The average fractionation factor was 3.47±0.251 while Aurelie reported the value as 4.67 [2].

 The fractionation factor was estimated by mass ratio instead of volume ratio using Quantulus 1220.

Fig. 7. Fractionation factor for PEM cell reported by Aurelie's work [4]

Characterization of the Plastic Scintillator Detector

Fig. 8. Energy calibration using ¹⁴C source and range of interest (ROI) setup based on the tritium energy spectrum.

- 99.99% of counts contained under 784th channel. (156/784 = 0.199 keV/Ch)
- ROI was set between 29 (~5.7 keV) and 94 (~18.6 keV) to obtained a half of beta-ray emitted from tritium.

> Characterization of the Plastic Scintillator Detector (cont.)

- The efficiency of tritium was calculated using tritium check (surficial) source.
- Corrected beta emission rate of the check source was 189 s⁻¹ for 2π direction with 6% relative error.
- Estimated efficiency was 33.28±4.016 % while the uncertainty quoted is the expanded uncertainty with a coverage factor K=2 (95% confidence level).

Continuous Measurement Result

Fig. 9. Continuous measurement result for tritium gas sample.

- The average count rate for gaseous tritium (58.35 Bq/L) and background was 2344±20.37 and 2317±11.75, respectively.
- Count rate of gaseous tritium shows slightly(1.1%) higher value than that of the background level.
- The count rate of lower limit of detection was 100.64 cpm where the net count rate of the tritium gas was 27 cpm.

MDA Estimation

Fig. 10. Minimum detectable activity estimation curve for gaseous and liquid sample.

- The MDA for 5 minute measurement was 100.8 Bq/L for gaseous sample where the activity of gaseous sample was calculated as 58.35 Bq/L.
- For 2 hour measurement, MDA for liquid sample was 87.78 kBq/L while the MDA for commercial tritium monitor (LIQ-X-H3, Technical Associates) for water was 370 kBq/L for 2 hours of measurement time.
 - To satisfy the EPA criterion for drinking water (740 Bq/L), background count rate should be reduced by 0.412 in CPM.

Conclusion

- > A continuous tritium in water monitoring system based on plastic scintillator detector and electrolysis was developed.
- The system had ability to sample the water continuously, gaseous tritium, produced by electrolysis, can be detected by plastic scintillator based detector, and its characteristics were evaluated.
- The developed system showed lower MDA (87.78 kBq/L for 2 hours) than the commercial product (370 kBq/L for 2 hours), but it is not reached to the EPA criterion for drinking water (740 kBq/L).
- For future work, MDA will be decreased by reduce the background count rate using coincidence circuit with two PMTs.

[1] Hee Reyoung Kim, Mun Ja Kang, Geun Sik Choi, "An experiment on the radioactivity characteristics of the tritium contaminated metal sample" Ann. Nucl. Energy, 38 (2011) 1074-1077.

[2] Aurelie M. Soreefan, Timothy A. DeVol, "Proportional counting of tritium gas generated by polymer electrolyte membrane (PEM) electrolysis" J. Radioanal. Nucl. Chem. 282 (2009) 517-521.

[3] Etsuko Furuta, Takao Kawano, A plastic scintillatioin counter prototype, Appl. Radiat. Isot. 104 (2015) 175-180.

[4] Aurelie M. Soreefan, Timothy A. DeVol, "Determinatino of tritium enrichment parameters of a commercially available PEM electrolyzer: a comparison with conventional enrichment electrolysis" J. Radioanal. Nucl. Chem. 282 (2009) 511-515.

for your attention