DE LA RECHERCHE À L'INDUSTRIE

Use of active scintillating targets in nuclear physics experiments -Measurement of spontaneous fission

<u>Gilbert Bélier</u>¹⁾, Jean Aupiais¹⁾, G. Sibbens²⁾, A. Moens²⁾, D. Vanleeuw²⁾

¹⁾ CEA-DAM-DIF, 91297 Arpajon, France
 ²⁾ JRC.G.2 Retieseweg 111, 2440 Geel, Belgium

LSC 2017, Copenhagen 1-5 may

www.cea.fr

Needs for highly precise nuclear data: Neutron induced reactions on actinides → Requires an active target to generate a fission trigger/veto

- ✓ Fission cross sections measurements spontaneous fission half-lives
- \checkmark Prompt fission neutron and γ -rays spectra measurements
- ✓ Fission product yields: on-going analysis on activation experiment
 performed at ILL on ²³⁵U (collaboration with ILL, Grenoble France)
- Spectroscopy of fission fragments prompt γ-rays: collaboration with
 ILL for phase 1 FIPPS experiments
- \checkmark (n,xn) and (n, γ) reactions

Use of actinide loaded organic liquid scintillators

Advantages:

- Very low count losses for α decays and fission events
- ✓ Pulse Shape Discrimination capability → particles identification
- ✓ Fast fluorescence
 - \rightarrow Time resolution about ~ 0.8 ns
 - \rightarrow Limited piled-up events
- ✓ Ease of fabrication: it's a 10 minutes work!!!

- D.L. Horrocks, Rev. Of Sci. Instruments 34(1963)1035 Interaction of fission fragments with organic scintillators
 - → Response of stilbène, NE150 plastic and toluene based scintillator
 - \rightarrow Fission PSD similar to electron's PSD
 - \rightarrow Fission light yield is 75 times lower than for electrons
- B. Wierczinski *et al.*, NIMA370(1996)532 Liquid-scintillation spectroscopy of αparticle emitters and detection of spontaneous fission events for on-line studies of actinide and transactinide elements
 - \rightarrow Flowing scintillator for heavy ions decay characterization
 - \rightarrow Fission PSD similar to α -particles PSD
 - \rightarrow Light yield for FF is 12.5 x lower compared to α -particles for toluene based scintillator

S. Mouatassim et al., NIMA359(1995)530

→ NE213 scintillator ^{1,2,3}H and ^{3,4}He Monotonic increase of the slow fluorescence/fast fluorescence ratio with ion mass

Cea Pulse Shape Discrimination (PSD)

Di-Isopropyl-Naphtalene (DIN) based scintillator


```
DE LA RECHERCHE À L'INDUSTRI
```

²⁵²Cf loaded DIN scintillator

16 MeV neutron irradiation Identification ratio α-particles G. Bélier et al., NIMA664(2012)341 Toluene and DIN based scintillators Fission PSD similar to proton's PSD or 10² \rightarrow intermediate between protons and α-particles α - α pile-up Fission light yield is 80 times lower than for \rightarrow electrons **Fission events** 10 Protons 0.5 Protons wall effects 1 **Electrons** ×10³ 100 200 50 150 0 Total signal charge (a.u.)

Detection efficiencies for PERALS tube geometry

SPONTANEOUS FISSION MEASUREMENTS

Precises fission cross section measurements require precise knowledge of fission fragment detection efficiency:

- Coincidence method: need high count rates
- Simulations: help for designing the detector (alpha-fission separation) but is not quantitative
- Spontaneous fission: can be used when branching ratio is sufficiently high, and precisely known
 - \rightarrow Measurement of ^{240}Pu and ^{242}Pu

 \rightarrow ²⁵²Cf

Exemple ²⁴⁰Pu sample, activity 78 kBq

Acquisition duration 60 days - Experiment duration 109.3 days

Measurements summary

²⁴⁰Pu

A 4 A ----

• This work *

• Holden evaluation [1]

• Salvador-Castiñeira [2]

 $T_f = 1.132(8).10^{11} y$ T_f=1.140(10).10¹¹ y $T_f = 1.165(13).10^{11} y$

²⁴² Pu	liquid-liquid extraction \rightarrow highly effective ²⁴¹ Am separation!
 This work* 	Т _f =6.77 <mark>(5)</mark> .10 ¹⁰ у
Holden evaluation	[1] T _f =6.77 <mark>(6)</mark> .10 ¹⁰ y

• Salvador-Castiñeira [2] $T_f = 6.74(9).10^{10} y$

252**Cf**

- This work* (statistical uncertainty) T_f=85.245(75) y
- Holden [1] ٠
- Nuclear Data Sheet 32 (1981) 87* ٠

T_f=86.000(1000) y

 $T_{f}=85.540(220)$ y

* NB: Ground state half-lives uncertainties not included!

[1] Pure Appl. Chem. 72(2000)1525 [2] Phys. Rev C88(2013)064611 DE LA RECHERCHE À L'INDUSTRI

Uncertainties

²⁴⁰ Pu sample Isotopic content May, 12 th 2011					
Isotope	Abundance (%)	Activity (% Bq)	SF rate (%)		
²³⁸ Pu	0,0733(29)	0.050(2)	0.001(1)		
²³⁹ Pu	0,0144(18)	0.0037(5)	-		
²⁴⁰ Pu	99,8915(18)	0.9486(10)	0.9980(1)		
²⁴¹ Pu	0,00041(31)	0.0014(11)	-		
²⁴² Pu	0.02027(41)	0.0003	0.00001		
²⁴⁴ Pu	0,000046(88)	-	-		
			k=2 uncertainties		

α-decay detection efficiency	0.01 %
α-α pile-up	0.04 %
α count	0.04 %
Isotopic content	0.12 %
Fission statistic	0.67 %
Total	0.68 %

→ Absolute limit due to sample knowledge

- Active scintillating targets are very precise for spontaneous half-lives measurements.
- On going analysis on FP activation measurement on ²³⁵U(n_{th},f) very promising (collaboration with ILL)
- Detector R&D effort in order to extend the use of active targets to high neutron energies (current limit at 6 MeV)
- Development of a fission trigger for FIPPS phase 1
- Long term: active scintillating targets are very promising for highly precise nuclear data measurements on actinides