Liquid Scintillator Neutron Detection System for Fast-ignition

Hongjie Liu

Laser Fusion Research Center, CAEP, Mianyang, P.R China
National Key Laboratory on Plasma Physics

May. 1-5, 2017 Copenhagen, Denmark
Contents

♦ Motivation
♦ Characteristic of the liquid scintillator
♦ Calculation model of the detector
♦ Calibration and Application
♦ Summary
Neutron detectors in inertial confinement fusion experiments are predominantly used to measure the neutron yield and ion temperature of the primary fusion reactions. These experiments produce nearly monoenergetic neutron spectra with energies of 2.45 MeV for deuterium DD and 14.1 MeV for deuterium-tritium DT-filled targets.

Neutron diagnosis in ICF

Compression

$$D + D \rightarrow ^{3}\text{He} + n \ (2.45\text{MeV})$$

Fusion Burn

$$D + T \rightarrow ^{4}\text{He} + n \ (14.1\text{MeV})$$

BF$_3$ Array

Cu Activation

Scintillator
The detection of neutrons in fast-ignition experiments is very challenging since it requires the neutron detection system to recover within 10–100 ns from a high background orders of magnitude stronger than the signal of interest. The background the hard x-ray emission from short-pulse laser target interactions for the fast-ignition experiments.

How the liquid scintillator works?

Liquid scintillator:
- PX+PPO+bis-MSB
- PXE+PPO+bis-MSB
- DIN+PPO+bis-MSB

The basic components of an liquid scintillator are a solvent and one or more fluorescent solutes. Both solvent and solutes in the liquid scintillators are aromatic hydrocarbons featured in benzenoid and heterocyclic ring structures.

Most of the excitation energy is originally deposited in the solvent, in which rather long-lived states are excited. The energy is first transferred to a primary and thence to a secondary fluorescence, that progressively shift the wavelength of the emitted light to the visible.
Character of the Liquid Scintillator

Liquid scintillator sample: PX & DIN (solvent) + PPO (solute)

Absorption spectra of the liquid scintillator is tested at different PPO concentration.

Fluorescence spectra of the liquid scintillator with different solvent at the same PPO concentration, 3g/L.
Character of the Liquid Scintillator

The high-dynamic-range decay profiles of PPO and PPO+bis-MSB liquid scintillators. The PPO+bis-MSB scintillators have a less intense afterglow compared with the PPO scintillators.

Schematic diagram of time-correlated single-photon counting technique for measuring the decay time of luminescence intensity. CFD: constant fraction discriminator and TDC: time-digital converter.
The calculation model was set up using Geant4. Including the incidence of the DD or DT neutron, elastomeric scattering and non-elastomeric scattering of the neutron are both considered in our calculation. The recoil protons lose their energy in the scintillator by ionization, excitation and radiation.
Calculation model of the liquid detector

Light tracer code X-LAB is used to optimize the shape of the detector.

Cylindrical? Cube? Sphere? Icecream-like?
Integrated design of the liquid detector

<table>
<thead>
<tr>
<th>R(cm)</th>
<th>V(mL)</th>
<th>η</th>
<th>η(Edep>0.5MeV)</th>
<th>η(Edep>2MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>922.6</td>
<td>83.3%</td>
<td>73.1%</td>
<td>41%</td>
</tr>
<tr>
<td>6</td>
<td>1342.2</td>
<td>87.6%</td>
<td>78.6%</td>
<td>48.5%</td>
</tr>
<tr>
<td>7</td>
<td>1874.2</td>
<td>90.1%</td>
<td>83.1%</td>
<td>54.6%</td>
</tr>
<tr>
<td>8</td>
<td>2531.9</td>
<td>92.3%</td>
<td>86%</td>
<td>59.7%</td>
</tr>
<tr>
<td>9</td>
<td>3325.7</td>
<td>93.7%</td>
<td>88.5%</td>
<td>64.4%</td>
</tr>
</tbody>
</table>

Sphere-cone

<table>
<thead>
<tr>
<th>R(cm)</th>
<th>V(mL)</th>
<th>η</th>
<th>η(Edep>0.5MeV)</th>
<th>η(Edep>2MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1062.21</td>
<td>83.3%</td>
<td>73.7%</td>
<td>43.2%</td>
</tr>
<tr>
<td>6</td>
<td>1618.7</td>
<td>87.9%</td>
<td>79.7%</td>
<td>51.4%</td>
</tr>
<tr>
<td>7</td>
<td>2365.9</td>
<td>90.8%</td>
<td>84.2%</td>
<td>57.9%</td>
</tr>
<tr>
<td>8</td>
<td>3338.3</td>
<td>92.7%</td>
<td>87.3%</td>
<td>63.6%</td>
</tr>
</tbody>
</table>

Column-cone
Calibration of the liquid scintillator

The calibration experiment was performed on the K-400 accelerator.

The sensitivity of the detector:

\[S(E) = \frac{Q(E)}{\Phi(E)} \]

- \(S(E) \) — the sensitivity, \((\text{C}\cdot\text{cm}^2)\)
- \(\Phi(E) \) — the incident neutron flux, \((1/\text{cm}^2)\)
- \(Q(E) \) — the output charge of the detector, \((\text{C})\)
Sensitivity of the liquid scintillator

DD sensitivity of the 2 # Detector
Sensitivity of the liquid scintillator

DD sensitivity of the 3# Detector
The indirect-drive fast ignition experiments were performed on the ShenguangII-U facility. Eight laser beams, 2.5 ns, 2000J, shaped-pulse, were injected in a cylindrical hohlraum targets, compressing the sphere shell. The ninth beam, 3ps, 300J, was used to produced electrons to ignite the compressed fuel. Our liquid scintillator detector was placed around the target chamber, 2.7~3.3m to the target.
In the experiment, the MCP is gated by applying a negative pulse of the order of 200 V to the photocathode, which extracts the photoelectrons from the photocathode and prevents them from reaching the MCP.
Our liquid scintillator detection system can clearly discriminate between the DD neutron signal and the hard X-rays. DD neutron yield in the shot with the PW heating laser was increased by a factor of 30-100 compared to without the PW heating laser.
Application on \((p, n) \rightarrow (d, n)\) neutron detection

Target: 10um CD + 5mm LiF

Laser: 100±20J, 1ps

Reaction: \((p, n) \rightarrow (d, n)\)
We present several designs of liquid scintillator using Geant4 calculation from the injection of the neutrons to the light getting into the MCP. Our liquid scintillator is based on PPO, dissolved in xylene and enriched with molecular O\textsubscript{2}.

The liquid scintillator system was calibrated and then applied in fast ignition experiments. It could dramatically improve neutron diagnostics in fast ignition experiments where neutrons have to be detected in the presence of an intense γ-ray burst.

The ability for liquid scintillator development, calculation model, integrate design, precise calibration, is established based on the research in the last few years.
COLLABORATORS

Laser Fusion Research Center, CAEP, Mianyang, Sichuan, China, 621900

Y.T Bi, W.Y Xu, L.P He
Southwest Scientific & Technology University, Mianyang, sichuan, China, 621010
THANKS FOR YOUR ATTENTION