

A New Measurement Method For Tritium Rapid Detection by LSC

IM.CAEP Xu Qinghua xuqinghuawork@sina.com

Outline

GBackground

Results and discussion

Materials and methods

Description Background

Gerication FOM value for channel

Sample spectra

There are many places related to occupational radiation of tritium.

✓HTO/HT in the air.

∽The tritium in plant and animal sample.

Quantulus 1220

∮³H configuration:

- SP 11 random coincidence spectrum
- SP 12 beta event spectrum (3H) + random coincidence + background
- SP 21 guard detector spectrum (not in coincidence with the beta events)
- SP 22 guard coincidence events (effective guard pulses)

Materials and methods

< ULTIMA GOLD LLT cocktail.

Standards, backgrounds and samples were mixed with a scintillation cocktail. The preparation method of background and standard was the same as the preparation of samples.

Results and discussion

Table.1 The composition of background samples

Entry	Vial type	Cocktail	Others
1	-	-	-
2	Glass	-	-
3	Teflon-copper	-	-
4	Glass	-	-
5	Glass	-	Glass
6	Teflon-copper	14	-
7	Glass	5	-
8	Glass	10	-
9	Glass	14	_
10	Glass	20	_
11	Glass	14	Tritium
	Ulass	14	standard

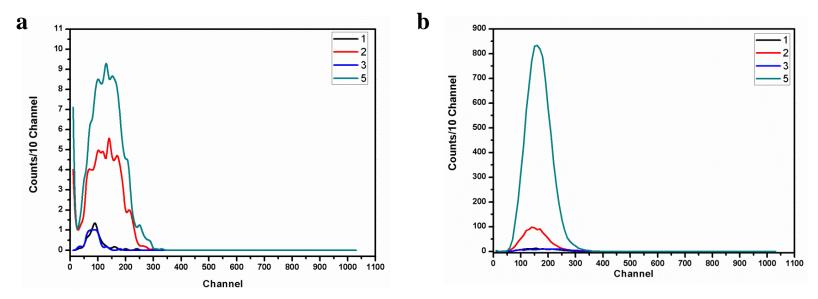


Fig.1. SP11(left) and SP12(right) spectra of empty load, empty vials and glass vial with glass.

Entry	Vial type	Cocktail	Others
1	-	-	-
2	Glass	-	-
3	Teflon-copper	-	-
5	Glass	-	Glass

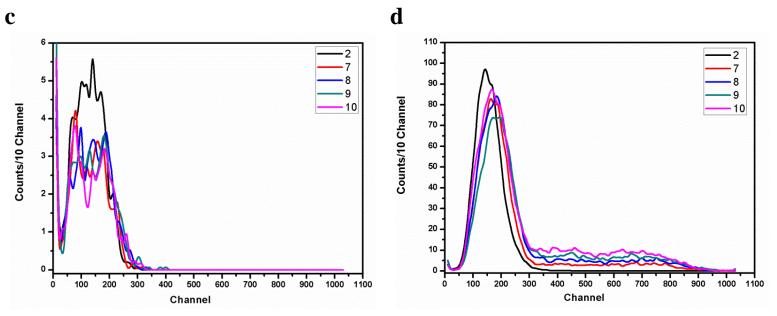


Fig.1. SP11(left) and SP12(right) spectra of empty glass vials and glass vial with cocktail.

Entry	Vial type	Cocktail	Others
2	Glass	-	-
7	Glass	5	-
8	Glass	10	-
9	Glass	14	_
10	Glass	20	_

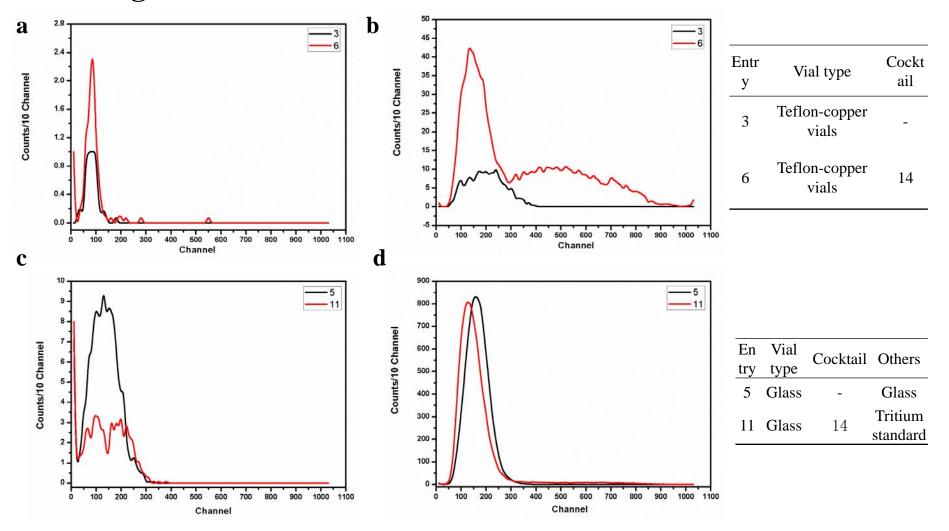


Fig.2. SP11(left) and SP12(right) spectra of empty vials, glass vials with glass and vial with tritium standard.

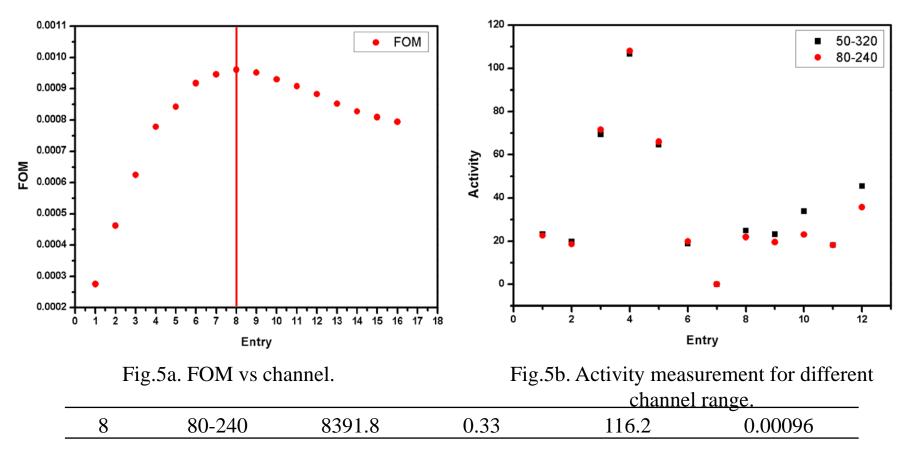
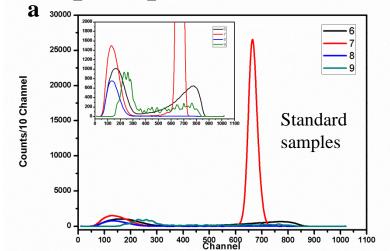

FOM value for channel

Table.2 FOM vs channel.

Entry	Channel	Counts	Efficiency	Background	FOM
1	150-170	1962.5	0.08	22.3	0.00028
2	140-180	3220.1	0.13	35.8	0.00046
3	130-190	4413.6	0.18	49.7	0.00062
4	120-200	5537.3	0.22	62.8	0.00078
5	110-210	6506.9	0.26	79.9	0.00084
6	100-220	7338.6	0.29	93.2	0.00092
7	90-230	7973.5	0.32	106.6	0.00095
8	80-240	8391.8	0.33	116.2	0.00096
9	70-250	8603.4	0.34	123.1	0.00095
10	60-260	8700.9	0.35	128.78	0.00093
11	50-270	8751.6	0.35	133.3	0.00091
12	40-280	8782.6	0.35	138	0.00088
13	30-290	8805.6	0.35	143.5	0.00085
14	20-300	8825.7	0.35	148.3	0.00083
15	10-310	8846.3	0.35	152.3	0.00081
16	0-320	8858.4	0.35	155.4	0.00079


Underground water, 20 metres distance to the surface.

С

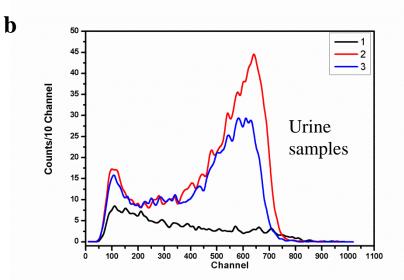
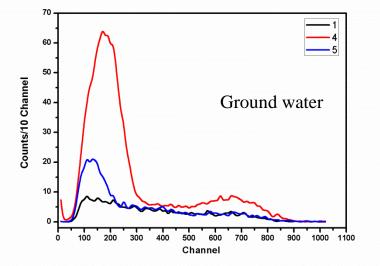



Table.3 The composition of samples

Entry	vial	Cocktail/mL	Sample
1	Glass	14	Tritium free water 6mL
2	Glass	14	Urine 6mL
3	Glass	14	Urine 6mL
4	Glass	14	Ground water 6mL
5	Teflon-copper vials	14	Ground water 6mL
6	Glass	14	K standard 6mL
7	Glass	14	Plutonium standard 6mL
8	Glass	14	Tritium water standard 6mL
9	Glass	14	Uranium standard

Fig.6. Samples spectra for the tritium detection model.

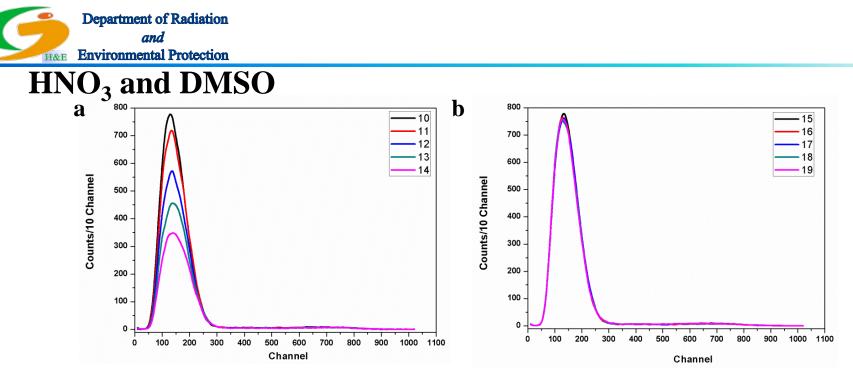


Fig.7a. Effect of HNO₃ and DMSO on the tritium detection.

T 1 1 4 T 1	• • •	C 1 '	1
Iable 4 The	composition	of quenching	samples
Iuolo. I Inc	composition	or queneming	Sumples

Entry	vial	Cocktail/mL	Addition
10	Glass	16	0.1 mL, 34% HNO ₃
11	Glass	16	0.2 mL, 34% HNO ₃
12	Glass	16	0.3 mL, 34% HNO ₃
13	Glass	16	0.4 mL, 34% HNO ₃
14	Glass	16	0.5 mL, 34% HNO ₃
15	Glass	16	0.1 mL, DMSO
16	Glass	16	0.2 mL, DMSO
17	Glass	16	0.3 mL, DMSO
18	Glass	16	0.4 mL, DMSO
19	Glass	17	0.5 mL, DMSO

HNO₃ and DMSO

Results and discussion

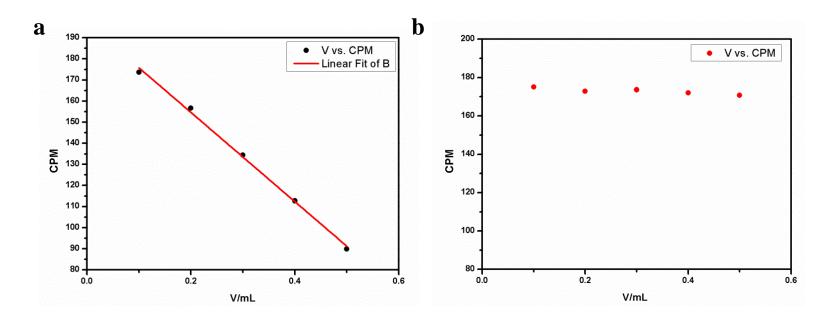


Fig.7b. Line of V vs. CPM on the tritium determination effected by HNO₃ and DMSO.

Results and discussion

Lines fitted to the efficiency vs. SQP(E)

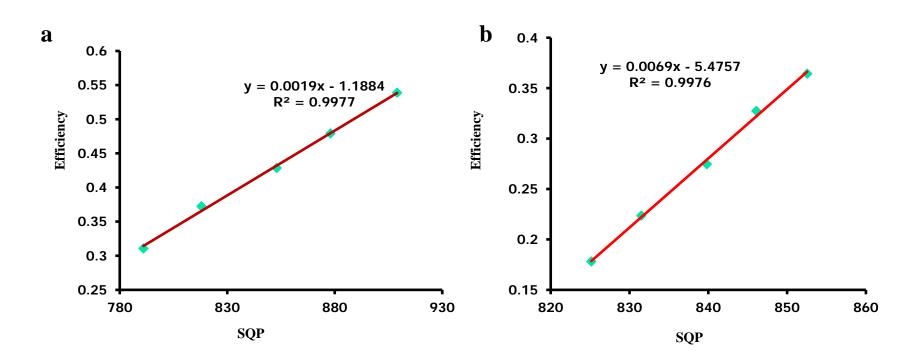


Fig.8. The lines fitted to the efficiency vs. SQP(E): the standard quench parameter take with the tritium activity was 160 Bq, and quench reagent was H_2O (left); the tritium activity was 160 Bq, and quench reagent was HNO₃ (right).

Results and discussion

Comparation of the efficiencies

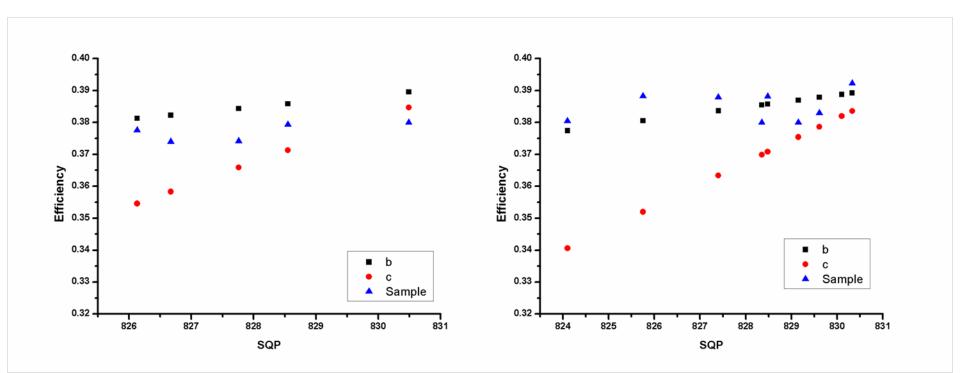


Fig.9. Efficiency received from different standard quenching parameter using tritium water standard. The left was distilled samples and the right was undistilled. a: Efficiency achieved from the equation vision on Fig.8b; b: Efficiency achieved from the equation vision on Fig.8c; Sample: Efficiency received from added standard.

Summary

The presence of potassium 40 in the glass bottle causes background elevation in the sample measurement process.

In the process of rapid measurement, the beta radioactive ions in solution will cause high measurement results, the position of the peak shift to the right.

Solution The influence of other β dacay cna be reduce by the shift of the peak.

In the process of rapid measurement, efficiency of liquid scintillation counting methods can be constructed from standard quenching parameter using tritium water standard.

