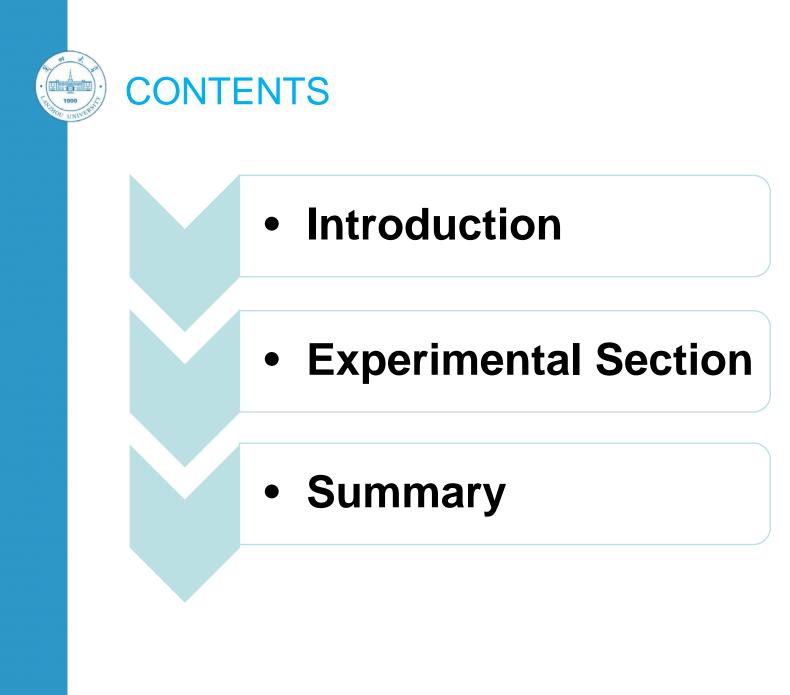


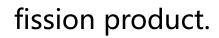
Determination of ⁹⁹Tc in UO₂ sample using liquid extraction separation and LSC measurement

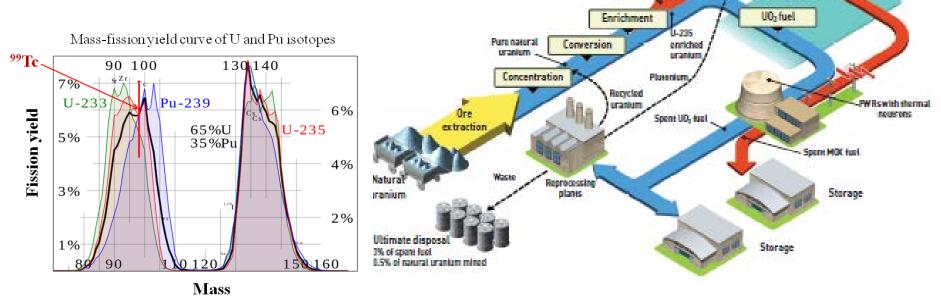
Keliang Shi, Zhiwei Niu, Wangsuo Wu


shikl@lzu.edu.cn

Radiochemistry Lab, School of nuclear Science and Technology Lanzhou University, China

LSC2017 conference, Copenhagen


LANZHOU UNIVERSITY School of Nuclear Science and Technology



Introduction

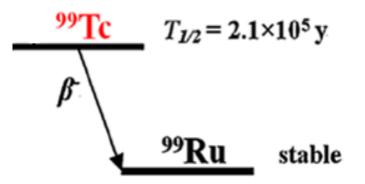
The importance of the present research

- Nuclear power is the potential clean energy ;
- UO₂ is the main component of spent fuel;
- ⁹⁹Tc is one of the most important

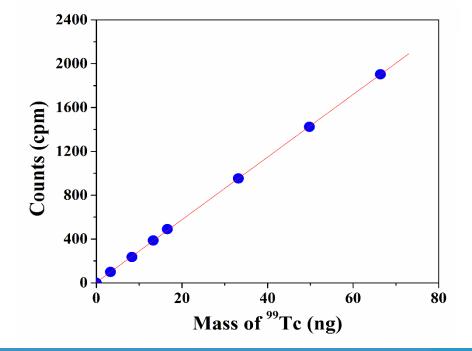
Storage

U-235

depicted uranium Fiel fabrication


MOX fuel

UD;+PUO;


Introduction

For ⁹⁹Tc measurement

- A purity β emitter;
- Maximum β energy of 0.294 MeV;

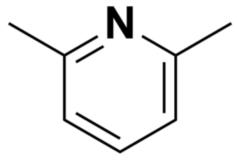
Can be measured by liquid scintillation counting

LANZHO

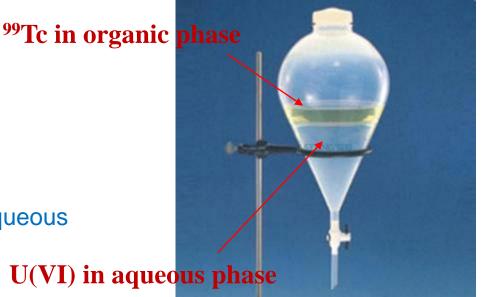
School of Nuclear Science and Technology

Introduction

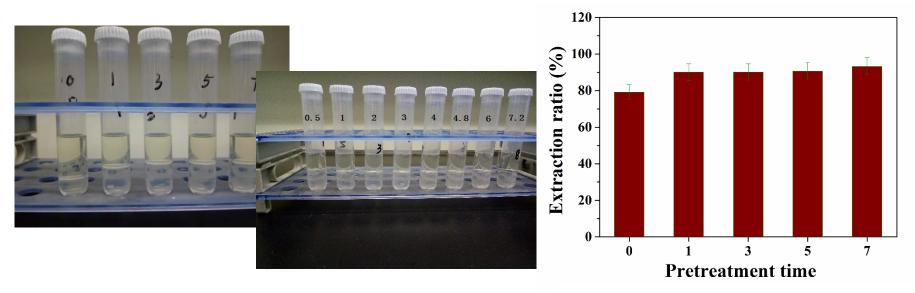
Determination of ⁹⁹Tc in UO₂ sample


- Low level of ⁹⁹Tc;
- High concentration of uranium;
- Efficient decontamination of uranium interference is necessary

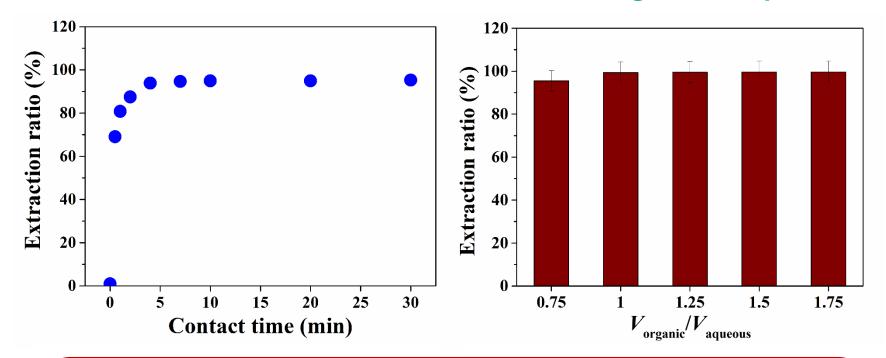
Sample number	Concentration of ⁹⁹ Tc (µg/mL)	Concentration of U(VI) (g/mL)	β counting rate (cpm)	
1	0.0332	0	980	
2	0.0332	0.004	67297	
3	0.0332	0.006	99628	
4	0.0332	0.008	128990	
5	0.0332	0.01	157160	
6	0.0332	0.012	183974	
7	0.0332	0.016	232437	


Solvent extraction method was applied for ⁹⁹Tc purification

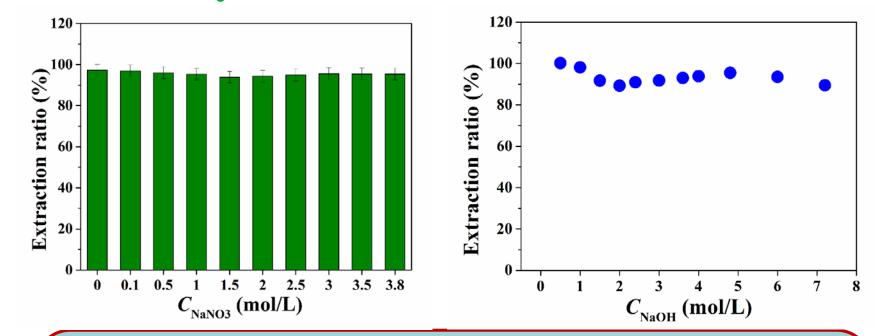
- Extractant: 2,6-dimethylpyridine;
- Aqueous: NaOH medium;
- **Optimized parameters**
 - Contact time;
 - Concentration of $NO_{3^{-}}$;
 - Concentration of NaOH;
 - Volume ratio of organic to aqueous


U(VI) in aqueous phase

2,6-dimethylpyridine



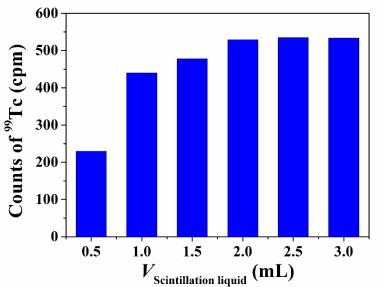
- 2,6-dimethylpyridine is miscible in acid medium;
- Two phase can be formed when the aqueous phase is strong alkaline medium;
- The volume expansion can be avoided when the extractant was pretreated with NaOH solution more than 3 time


School of Nuclear Science and Technology

Effect of contact time and volume ratio of organic to aqueous

- The extraction rate of ⁹⁹Tc from aqueous phase to organic phase is so fast, the equilibrium can be reached within 5 min;
- 2) The extraction ratio of ⁹⁹Tc is close to 100% and keeps stable when the volume ratio of organic phase to aqueous phase is above 1:1.

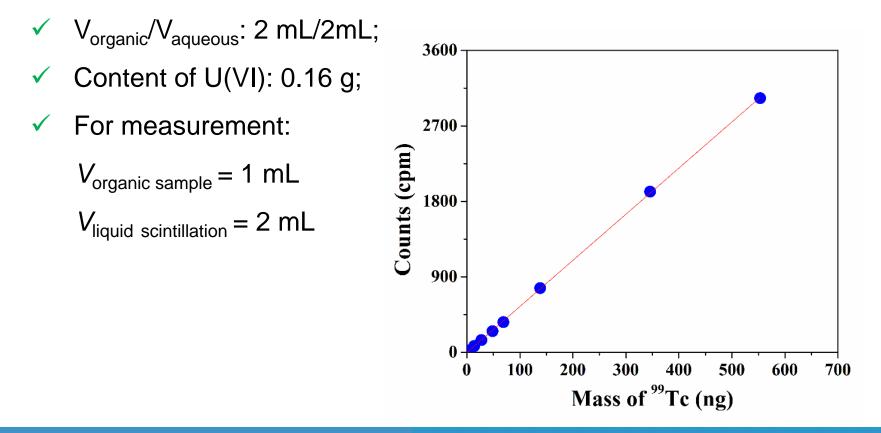
□ Effect of NO₃⁻ and NaOH concentration on the extraction of ⁹⁹Tc

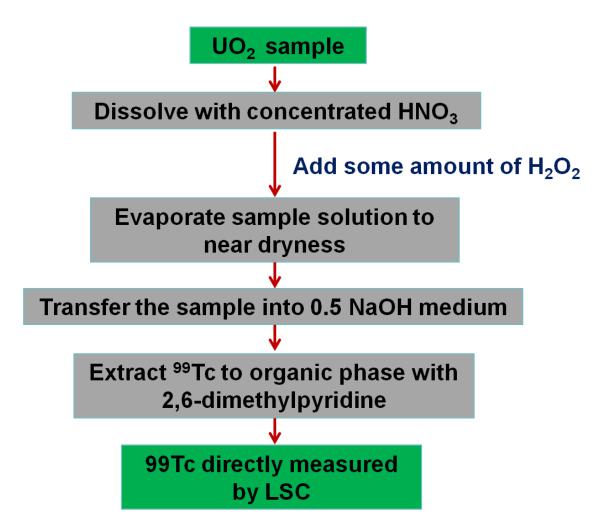

- The effect of NO₃⁻ concentration (from 0 to 3.8 mol/L) on ⁹⁹Tc extraction is insignificant;
- 2) The lower concentration of NaOH, the higher extraction ratio of ⁹⁹Tc;
- 3) It is difficult to separate the organic phase and aqueous phase when the concentration of NaOH is less than 0.5 mol/L.

Effect of U(VI) concentration on the extraction of ⁹⁹Tc

Sample number	1	2	3	4	5	6	7
Counts in aqueous (cpm) (before extraction)	857	67297	99628	128990	157160	183974	232437
Counts in organic phase (after extraction) (cpm)	860	857	865	851	870	866	859
Quality of U(VI) added (mg)	0	28.24	42.36	56.48	70.6	84.7	112.96

Effect of liquid scintillator volume


- Measurement time: 10 min;
- ✓ Volume of organic sample: 1 mL;
- \checkmark The liquid scintillation cocktail is kept $\frac{1}{2}$ in dark room more than 6 h.


School of Nuclear Science and Technology

Working curve

- Contact time for extraction: 10 min;
- ✓ Aqueous phase: 0.5 mol/L NaOH medium with ⁹⁹Tc and uranium;

□ Analytical procedure for ⁹⁹Tc determination in UO₂ samples

Procedure evaluation using standard addition method

- > Amount of UO_2 sample: 0.2 g;
- > Quality of ⁹⁹Tc added: 0.25 μ g;
- Volume of organic phase/aqueous phase: 2 mL/2mL

The analytical results for ⁹⁹Tc spicked in UO₂ samples

Sample number	1	2	3	4	5	6
⁹⁹ Tc measurement (µg)	0.235	0.239	0.246	0.235	0.238	0.238
Recovery (%)	94.4	95.9	98.8	94.3	95.6	95.5
RSD 1.76 %						

- Because of the interference of uranium, the direct determination of 99 Tc in UO₂ sample by LSC is difficult;
- ⁹⁹Tc can be effectively extracted from 0.5 mol/L NaOH solution by 2,6dimethylpyridine, but keep uranium in aqueous;
- The parameters which affect the purification of ⁹⁹Tc during extraction step were optimized;
- A procedure for rapid determination of ⁹⁹Tc in UO₂ sample was set up and applied for sample analysis;
- The analytical method was evaluated using standard addition method, the recovery of ⁹⁹Tc is higher than 94%, and the RSD for 6 samples is lower than 2%.

Thanks for your attention