PS resins for the characterization of nuclear wastes: application to ¹²⁶Sn and ⁶³Ni

Eduard Pelay, Ariadna Ferradal, Ignasi Villarroya, <u>Héctor Bagán</u>, Alex Tarancón, José F. García

High number of nuclear facilities to be decommissioned

Necessity of new methods

¹²⁶Sn: fission product \rightarrow ⁶³Ni: activation product \rightarrow

importance in long term storage high importance in decommissioning

Introduction

- γ emitters easy to determine
- β and α some challenges

- LS common technique for measurement of β emitters
- Problems of selectivity chemical separations

The objective of this study is to develop new PS resin follow new preparation procedures for the analysis of nuclear wastes

Proportion

BARCELONA

Batch medium determination

Optimum medium HCl 2 M

Calibration

Isotope	Mean Energy (keV)	Detection efficiency (%)
⁶³ Ni	17.43	15.5
14 C	49.16	54.8
⁹⁹ Tc	94.60	81.7
³⁶ Cl	316.00	98.5

Isotope	Mean Energy (keV)	Detection efficiency (%)
126 Sn	118.7	92 7
^{121m} Sn	120.7	03.7

			34.56
Eff =	112.68	· e ⁻	E _{mean}

Quantification

Isotopas	Estimated Activity		
Isotopes	(dpm/g)		
¹²⁶ Sn	79		
^{121m} Sn	4988		
²⁴¹ Am	56		
Total activity	5067		

Laboratoire Nationale Henry Becquerel

Replicate	Count rate (cpm)	Activity (dpm/g)	Quantification Error (%)
R1	420.00	5004	1.3
R2	420.09	4943	2.5
R3	412.46	4851	4.3
Mean 4933 ± 7		4933 ± 77	
Quantitative retention			

Preparation strategy

Immobilization

Imprinted

Covalent bound

Immobilization

Resins properties

	Dogin	Detection efficiency(%)		
Medium: Ammonium	Kesiii	Solution	Evaporated	
	DMG + 1-octanol	11.0±1.1	29.4±1.5	
	DMG	14.6±1.3	17.9±0.4	
citrate pri 8	iPyr + 1-octanol	8.1±1.0	12.4±1.1	
	iPyr	7.9±0.6	27.6±1.5	

Best column: DMG

Column analysis

Resin	Total Efficiency (%)
DMG + 1-octanol	0.15 ± 0.04
DMG	0.54 ± 0.07

Lost of the extractant

Selectivity based on steric impediment

No break through volume Use of generic extractants

Retention

Madium	Resin	Detection efficiency(%) SQP(E)		QP(E)		
Medium:		Solution	Evaporated	Solution	Evaporated	
Ammonium	MIP	3.1±0.4	11.8±0.9	506.1	475.4	quenching
citrate pH 7-11						

Covalent bound

Di-(2-picoyl)amine

No break through volume More reproducible

A new PS resin for ¹²⁶Sn determination has been developed

Different approaches for the preparation of a ⁶³Ni PS resin were evaluated

MIP procedure shows a high selectivity

Acknowledgments

- Ministerio de Economia y Competitividad (MINECO) for financial support under CTM2014-02020
- Agència de Gestió d'Ajuts Uiversitaris i de Recerca (AGAUR) for financial support under 2014-SGR-1277.
- Dr. Philippe Cassette from LNHB (France) for supplying the ¹²⁶Sn solution.

PS resins for the characterization of nuclear wastes: application to ¹²⁶Sn and ⁶³Ni

Eduard Pelay, Ariadna Ferradal, Ignasi Villarroya, <u>Héctor Bagán</u>, Alex Tarancón, José F. García

