Measurement of Tritium, gross α/β and ²²²Rn using the Quantulus GCT 6220

Dr. Ronald Edler 1st – 5th May 2017, Copenhagen

Introduction

Overview:

- Used Instrumentation
 - Quantulus GCT 6220
 - Guard Compensation Technology (GCT)
- European directive 2013/51 Euratom
- Experimental part
 - ³H measurements
 - ²²²Rn measurements
 - $\circ~$ Gross α/β measurements

Quantulus GCT 6220

Patent pending Guard Compensation Technology

Resulting in lowest backgrounds

The Quantulus GCT is using a Tri-Carb housing but inside it is different. The new Quantulus uses the α/β -discrimination of the Quantulus 1220, pulse amplitude comparison of the Quantulus 1220, new Pulse Shape Analysis (using Histrogram mode) and the new GCT technology for background reduction.

The Quantulus GCT is still based on the BGO-guard detector. The patent pending GCT technology eliminates background which was overseen by the Guard in the past.

Resulting in lower background with still high efficiency and consequently higher sensitivity compared to older models.

An external γ -source close to the instrument is used to determine the efficiency of the BGO guard. Counts in coincidence with the guard are stored in one MCA and signals not in coincidence with the guard but detected in the sample chamber are stored in a second MCA.

The guard efficiency is defined as follows:

$$GE_R = \frac{SP12_R}{SP12_R + SP11_R}$$

Once knowing the Guard Efficiency compensated guard counts can be determined.

Subtracting the number of counts coincident with the guard from the compensated guard counts results in the counts missed by the guard detector.

$$GCM_R = CGC_R - SP12_R$$

The number of missed guard counts are used to correct the background.

The guard compensation (efficiency) is energy dependent consequently long counting times are required for the efficiency determination.

More than one efficiency table might be necessary for different situations such as glass or plastic vials.

Principle of the Guard Compensation Technology

The QuantaSmart software allows to choose from a library of GCT optimization files for correct background compensation for different applications.

ns Count Corrections	Report Definition	Report Output	Special Files	Worklist	Assay Details			
iditions								
tic Controller				Co	incidence Time	(nsec):	18	
ninescence Correction				De	lay Before Burst	(nsec):	75	
						GCT:	High	\sim
					GCT Optim	ization	Default	\sim
					Str	rength:	Default Instafluor UG 15-3 H2O UG LLT 10-10 UG-LLT-H2O	
					Auxiliary Spe	ectrum:	UGLLT 10-10 UGLLT 12-8 UnquenchedLLT	

What does the Council Directive cover?

Water intended for human consumption. All water intended for drinking, cooking, food preparation or other domestic purposes supplied in distribution network, a tanker, or in bottles or containers.

Indicative Dose 0.1 mSv, effective dose of all ingested radionuclides in one year via consumption of water intended for human use excluding ³H, ⁴⁰K, Rn and short lived decay products.

The European Council set parametric values and required detection limits for the used instrumentation for nuclides of interest.

European Council Directive 2013/51 Euratom

Nuclide	Parametric Value (Bq/I)	Required Detection Limit (Bq/I)
³ Н	100	10
²²² Rn	100	10
Gross α	0.1	0.04
Gross β	1.0	0.40

The measurement of above nuclides attracted a lot of interest among the LSC community because of the simplicity of the measurement for drinking water and the high number of samples. Sample preparation:

All water samples were distilled before counting.

All samples contained 8 ml of water and 12 ml of Ultima Gold LLT in plastic vials.

All measurements have been done in the PerkinElmer office in Hamburg using the optimized window determined with the SpectraWorks2 software. Counting window from 0.5 – 4.0 keV.

Instrument	Efficiency (%)	BG (CPM)	Count Mode	E ² / B
Tri-Carb 4910	25.7	1.91	NCM	346
Normal Count Mode	Low Level Count Mode	Super Low Level Co	ount Mode 🛛 🗧 NCM with G	GCT off

NCM with GCT High

Instrument	Efficiency (%)	BG (CPM)	Count Mode	E ² /B
Tri-Carb 4910	25.7	1.91	NCM	346
Tri-Carb 4910	23.0	1.29	LLCM	410
Normal Count Mode	Low Level Count Mode	Super Low Level Co	ount Mode 🛛 🗧 NCM with G	CT off

• NCM with GCT High

Instrument	Efficiency (%)	BG (CPM)	Count Mode	E ² /B
Tri-Carb 4910	25.7	1.91	NCM	346
Tri-Carb 4910	23.0	1.29	LLCM	410
Quantulus GCT 6220	23.6	1.00	NCM GCT off	557
Normal Count Mode – Low Level Count Mode – Super Low Level Count Mode – NCM with GCT off				

• NCM with GCT High

Instrument	Efficiency (%)	BG (CPM)	Count Mode	E²/B
Tri-Carb 4910	25.7	1.91	NCM	346
Tri-Carb 4910	23.0	1.29	LLCM	410
Quantulus GCT 6220	23.6	1.00	NCM GCT off	557
Quantulus GCT 6220	20.4	0.61	SLLCM	682
Normal Count Mode				

• NCM with GCT High

Instrument	Efficiency (%)	BG (CPM)	Count Mode	E²/B	
Tri-Carb 4910	25.7	1.91	NCM	346	
Tri-Carb 4910	23.0	1.29	LLCM	410	
Quantulus GCT 6220	23.6	1.00	NCM GCT off	557	
Quantulus GCT 6220	20.4	0.61	SLLCM	682	
Quantulus GCT 6220	23.6	0.21	NCM GCT high	2652	
Normal Count Mode					

NCM with GCT High

Detection Limit (Bq/I)	Counting Time (Minutes)	Count Mode
10.0	32.0	Tri-Carb 4910 NCM
10.0	28.0	Tri-Carb 4910 LLCM
10.0	22.0	Quantulus NCM GCT off
10.0	8.0	Quantulus NCM GCT high

Detetection limit according to ISO 11929, $k_{1-\alpha} = k_{1-\beta} = 1.65$, Sample volume 8 ml

³H Measurements of spiked water

Known Activity* (Bq/I)	Measured Activity (Bq/I)	2 σ Confidence Range (Bq/I)
9.3	9.0	7.7 – 10.1
37.3	36.1	31.5 – 40.5
83.9	82.1	72.0 – 92.0

(*Samples from German Federal Institute of Hydrology)

Samples:

Water samples (12 ml) measured with Ultima Gold F (10 ml). The sample was shaken 30 seconds and allowed to separate. The measurement started after 3 hours to have equilibrium of the three α -emitter ²²²Rn, ²¹⁸Po and ²¹⁴Po and two β -emitter ²¹⁴Pb and ²¹⁴Bi.

Measurements were done using protocols with and without α/β -discrimination.

²²²Rn, ²¹⁸Po and ²¹⁴Po three hours after extraction of ²²²Rn with Ultima Gold F from a ²²⁶Ra source in glass vial.

Vial	Efficiency (%)	BG (CPM)	α/β– Discrimination	Energy Window (keV)
Plastic	185.8	0.8	Yes	160 – 650
Glass 1	183.2	0.8	Yes	145 – 840
Glass 2	179.5	0.8	Yes	145 – 840
Glass 1	264.1	0.5	No	20 – 840
Glass 2	275.2	0.5	No	20 – 840

All measurements done with a Quantulus GCT 6220

Vial	Detection Limit (Bq/I)	Counting Time (Minutes)	α/β– Discrimination
Plastic	10.0	0.5	Yes
Glass 1	10.0	0.5	Yes
Glass 2	10.0	0.5	Yes
Glass 1	10.0	0.25	No
Glass 2	10.0	0.22	No

All measurements done with a Quantulus GCT 6220

Typically 100 to 120 ml drinking water, in samples with low salt content up to 150 ml can be used. After distillation to dryness and uptake in 8 ml of water this can be measured in 12 ml Ultima Gold LLT. All samples were acidified with nitric acid to pH 1.8 All samples were measured with α/β -discrimination.

Gross α/β -Measurements in water

Sample	СРМ	Efficiency (%)	Energy Window (keV)
α -background	0.53	97.8	80 – 400
β –background	0.38	91.7	12 – 800

 α -Detection limit 0.036 Bq/l β -Detection limit 0.032 Bq/l

Sample volume 120 ml, counting time 200 minutes, $k_{1-\alpha} = k_{1-\beta} = 1.65$

Gross α/β -Measurements in water

Sample	Gross α (Bq/I)	Gross β (Bq/l)
Tap Water 1	< LOD	< LOD
Tap Water 1	< LOD	0.035
Mineral Water 1	0.045	0.045
Mineral Water 2	< LOD	< LOD

All measurements done with a Quantulus GCT 6220

Thank you for your attention

Ronald Edler

European Field Application Specialist Ronald.edler@perkinelmer.com

+49 172 638 5909

