

A method for ²³⁷Np determination with LSC in the experiment of neptunium sorption onto bentonite

Wangsuo Wu, Ping Li, Keliang Shi

Radiochemistry Lab School of Nuclear Science and Technology, Lanzhou University

> wuws@lzu.edu.cn LSC 2017 Denmark

OUTLINE OF THE TALK

Introduction

Results and Discussion

Summary

Radiochemistry Laboratory Lanzhou University

Introduction

Background

²³⁷Np will be a major contributor to environmental radioactivity from the disposal of high- or intermediate-level radioactive waste because of its long half-life ($t_{1/2} = 2.14 \times 10^6$ yr), suspected high radiotoxicity and low affinity for many geological minerals. (usually present as the pentavalent NpO₂⁺ cation under several environmental conditions)

yield tracer such as high purity ²³⁶Np.

However,

- Both alpha and NAA methods require tedious chemical separations of analytes and long counting times. Both methods suffer from potential interferences from the presence of high levels of uranium, thorium, polonium, etc., in environmental samples, as well as the influence of self-adsorption.
- ²³⁹Np tracer has a too short half-life (T_{1/2} = 2.36 d).
- In PERALS system, a process of extraction is needed.
- Peak tailing of ²³⁸U and molecular interferences (e.g. ²³⁵U¹H²⁺, ²³⁶U¹H⁺) in the method of ICP-MS.

.....

LSC is widely used in the field of radionuclide metrology, because of its numerous advantages over conventional techniques:

- Virtually 100% counting efficiency;
- simple sample preparation;
- Large sample capacity;
- high throughput-automatic, multiple sample counting;
- no disturbance from the self-adsorption;
- Low backgrounds and great sensitivity for alpha counting, etc.

Very proper for samples determination in batch sorption experiment.

However,

$$\frac{\alpha}{T_{1/2} = 1.6 \times 10^5 a} \frac{233}{Pa} \frac{\beta}{T_{1/2} = 27 d} \frac{233}{U} \frac{\alpha}{T_{1/2} = 1.4 \times 10^6 a}$$

The β active daughter ²³³Pa (t_{1/2} = 27.00 d) has a radioactivity 2.89×10⁷ times higher than ²³⁷Np.

To solve this problem:

The use of a pulse shape analysis (PSA) technique.

Introduction

- Determination by LSC

Theory:

De-excite of alpha particles to the ground state slower than singlet states produced by beta particles.

Measurement of the pulse decay time or length allows identification of the particle which caused it and enables simultaneous recording of pure alpha and beta spectra, respectively.

By optimizing the PSA setting, a high efficiency 98% for alpha counting and a discrimination of beta emitters of 99.9% could be achieved.

Usually, a pure α emitter and a pure β emitter are needed. The best pure α and β emitters should be the same nuclides as are present in the sample. Otherwise, some alternative nuclides with the same energy distribution could be used practically. Nevertheless, in some cases such as the determination of ²³⁷Np/²³³Pa, it is not convenient to obtain a pure α emitter or a pure β emitter with the same energy distribution as ²³³Pa.

Therefore, we set the optimum PSA by measuring the sample itself of mixed a/β emitters as well as a background sample.

PSA-level Optimization

Results and Discussion – PSA-level Optimization

This is similar to the measurement of ²²²Rn:

Byegård J, Ramebäck H, Widestrand H. International Progress Report IPR-02-68. 2002

Results and Discussion – PSA-level Optimization

Radiochemistry Laboratory Lanzhou University

Validation of the selected PSA-level

If the PSA-level is set higher than the optimum, many of the pulses originating from β -activity will be falsely accepted as α -decay.

The misclassified β events of ²³³Pa into α -MCA will greatly influence the results of neptunium sorption experiment since Pa⁵⁺ exhibits very different sorption ability to NpO₂⁺.

Use the mathematic method of Aupiais et al. to validate:

Fig. 1. 237 Np spectrum by alpha liquid scintillation. Condition of extraction: oxidation by AgO and extraction by POLEX in 0.1 M HNO₃+3.9 M NH₄NO₃.

Channel

A series of samples are determined at PSA-level=38 as well as analyzed by the mathematic method. The results are compared:

_

APSA-level=38, the detected α emission accounts for ~86% of the total ²³⁷Np α emission and ~14% of α emission is misclassified into β -MCA.

The selected PSA-level is slightly lower than the optimum. We can then obtain the optimum PSA-level by increasing PSA-level until the exact value of total ²³⁷Np a emission is reached. However, the PSA-level is not further optimized on account of the fact that in the experiment of neptunium sorption onto bentonite, sorption percentages of neptunium can be obtained by:

$$Sorption\% = \frac{CPM_t - CPM_s}{CPM_t}$$

where CPM_t is the total α emission of the sample in batch sorption experiment; CPM_s is the α emission in supernatant.

Inferring from the equation, the calculated sorption percentage does not change while ~86% of true CPMt and CPMs is detected, i.e. the misclassified ~14% of α emission has no influence on the sorption results.

PSA-level=38 is suitable for the determination of ²³⁷Np samples.

Quenching of bentonite

Almost ~50% of ²³⁷Np(V) is adsorbed on betonite under this condition, but no obvious influence was observed, the measurement was not influenced.

Therefore, suspension samples can be directly determined. In conclusion, the second mode is more suitable for the determination of batch experiment samples.

Solid to Volume ratio (g/L)	Solution pH	Linear relationship between the detected α emission and ²³⁷ Np tracer content at PSA-level=38	R ²
0.2	2.0	y=1391.96x	0.9997
1.0	2.0	y=1377.03x	0.9996
1.0	8.8	y=1389.98x	0.9999
10.0	8.5	y=1342.53x	0.9995

Radiochemistry Laboratory Lanzhou University

Summary

PSA-level Optimization

• ²³⁷Np samples were well measured on Wallac Guardian 1414 at PSAlevel = 38. At this PSA-level, practically all pulses from β -activity of ²³³Pa are discarded and ~86% of total α emission was detected.

Determination Modes

 Bentonite solid particles in sample have no influence on ²³⁷Np sample measurement by LSC. As a result, sorption percentage can be calculated by counting suspension and equivalent supernatant from the same sample.

Notice

 The numerical setting of the PSA-levels works on the Wallac Guardian 1414 is defined in a different way than the corresponding settings on some other LSC such as Wallac Rackbeta 1219 (Chalmers). Therefore, the selected PSA-level in this study cannot be directly applied to ²³⁷Np measurement on some other LSCs.

Thanks for your attention!

School of Nuclear Science and Technology Lanzhou University